Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(46): 21696-21702, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30431043

ABSTRACT

ZnO-based hierarchical structures including nanoparticles (NPs), nanorods (NRs) and nanoflowers (NFs) on a 3D-printed backbone were effectively fabricated via the combination of the fused deposition modelling (FDM) 3D-printing technique and hydrothermal reaction. The photocatalytic performance of the ZnO-based hierarchical structures on the 3D-backbone was verified via the degradation of the organic pollutant methylene blue, which was monitored by UV-vis spectroscopy. The new photocatalytic architectures used in this investigation give an effective approach and wide applicability to overcome the limitation of photocatalysts such as secondary removal photocatalyst processes.

2.
Sci Rep ; 7: 46895, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28836623

ABSTRACT

This corrects the article DOI: 10.1038/srep46314.

3.
Sci Rep ; 7: 46314, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393906

ABSTRACT

Overcoming the resolution limit of conventional optics is regarded as the most important issue in optical imaging science and technology. Although hyperlenses, super-resolution imaging devices based on highly anisotropic dispersion relations that allow the access of high-wavevector components, have recently achieved far-field sub-diffraction imaging in real-time, the previously demonstrated devices have suffered from the extreme difficulties of both the fabrication process and the non-artificial objects placement. This results in restrictions on the practical applications of the hyperlens devices. While implementing large-scale hyperlens arrays in conventional microscopy is desirable to solve such issues, it has not been feasible to fabricate such large-scale hyperlens array with the previously used nanofabrication methods. Here, we suggest a scalable and reliable fabrication process of a large-scale hyperlens device based on direct pattern transfer techniques. We fabricate a 5 cm × 5 cm size hyperlenses array and experimentally demonstrate that it can resolve sub-diffraction features down to 160 nm under 410 nm wavelength visible light. The array-based hyperlens device will provide a simple solution for much more practical far-field and real-time super-resolution imaging which can be widely used in optics, biology, medical science, nanotechnology and other closely related interdisciplinary fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...