Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Comput Biol Med ; 175: 108412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691914

ABSTRACT

Brain tumor segmentation and classification play a crucial role in the diagnosis and treatment planning of brain tumors. Accurate and efficient methods for identifying tumor regions and classifying different tumor types are essential for guiding medical interventions. This study comprehensively reviews brain tumor segmentation and classification techniques, exploring various approaches based on image processing, machine learning, and deep learning. Furthermore, our study aims to review existing methodologies, discuss their advantages and limitations, and highlight recent advancements in this field. The impact of existing segmentation and classification techniques for automated brain tumor detection is also critically examined using various open-source datasets of Magnetic Resonance Images (MRI) of different modalities. Moreover, our proposed study highlights the challenges related to segmentation and classification techniques and datasets having various MRI modalities to enable researchers to develop innovative and robust solutions for automated brain tumor detection. The results of this study contribute to the development of automated and robust solutions for analyzing brain tumors, ultimately aiding medical professionals in making informed decisions and providing better patient care.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Deep Learning , Image Interpretation, Computer-Assisted/methods , Brain/diagnostic imaging , Machine Learning , Image Processing, Computer-Assisted/methods , Neuroimaging/methods
2.
Sci Rep ; 13(1): 10256, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355761

ABSTRACT

Solar energy is a very efficient alternative for generating clean electric energy. However, pollution on the surface of solar panels reduces solar radiation, increases surface transmittance, and raises the surface temperature. All these factors cause photovoltaic (PV) panels to be less efficient. To address this problem, a stacking ensemble classifier-based machine learning model is proposed. In this study, different sources of pollution on each solar panel are used, and their power generation is recorded. The proposed model includes gradient boost, extra tree, and random forest classifiers, with the extra tree classifier serving as a meta-learner. The model takes into account various weather features during the training process, including irradiance and temperature, aiming to increase its accuracy and robustness in identifying pollution sources on the PV panel. Moreover, the proposed model is evaluated using various methods in order to examine performance metrics such as accuracy, F1 score, and precision. Results show that the model can achieve an accuracy score of 97.37%. The model's performance is also compared to state-of-the-art machine learning models, demonstrating its superiority in accurately classifying pollution sources on PV panels. By utilizing different sources of pollution and weather features during training, the model can accurately classify different pollution sources, resulting in increased power generation efficiency and the longevity of PV panels. The main results of this study can be used to manage and maintain PV panels since the model can identify PV modules that need to be cleaned to keep producing the most power. Furthermore, the efficiency, reliability, and sustainability of PV panels can be further enhanced by the proposed model.


Subject(s)
Machine Learning , Computer Simulation , Environmental Pollution/analysis , Reproducibility of Results , Solar Energy
3.
Sensors (Basel) ; 23(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37112409

ABSTRACT

The rapid development of information and communication technology has fostered a natural integration of technology and design. As a result, there is increasing interest in Augmented Reality (AR) business card systems that leverage digital media. This research aims to advance the design of an AR-based participatory business card information system in line with contemporary trends. Key aspects of this study include applying technology to acquire contextual information from paper business cards, transmitting it to a server, and delivering it to mobile devices; facilitating interactivity between users and content through a screen interface; providing multimedia business content (video, image, text, 3D elements) via image markers recognized by users on mobile devices, while also adapting the type and method of content delivery. The AR business card system designed in this research enhances traditional paper business cards by incorporating visual information and interactive elements and automatically generating buttons linked to phone numbers, location information, and homepages. This innovative approach enables users to interact and enriches their overall experience while adhering to strict quality control measures.

4.
Biology (Basel) ; 12(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36671783

ABSTRACT

Pregnancy and early childhood are two vulnerable times when immunological plasticity is at its peak and exposure to stress may substantially raise health risks. However, to separate the effects of adversity during vulnerable times of the lifetime from those across the entire lifespan, we require deeper phenotyping. Stress is one of the challenges which everyone can face with this issue. It is a type of feeling which contains mental pressure and comes from daily life matters. There are many research and investments regarding this problem to overcome or control this complication. Pregnancy is a susceptible period for the child and the mother taking stress can affect the child's health after birth. The following matter can happen based on natural disasters, war, death or separation of parents, etc. Early Life Stress (ELS) has a connection with psychological development and metabolic and cardiovascular diseases. In the following research, the main focus is on Early Life Stress control during pregnancy of a healthy group of women that are at risk of future disease during their pregnancy. This study looked at the relationship between retrospective recollections of childhood or pregnancy hardship and inflammatory imbalance in a group of 53 low-income, ethnically diverse women who were seeking family-based trauma treatment after experiencing interpersonal violence. Machine learning Convolutional Neural Networks (CNNs) are applied for stress detection using short-term physiological signals in terms of non-linear and for a short term. The focus concepts are heart rate, and hand and foot galvanic skin response.

5.
Sensors (Basel) ; 23(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679392

ABSTRACT

In terms of electric vehicles (EVs), electric kickboards are crucial elements of smart transportation networks for short-distance travel that is risk-free, economical, and environmentally friendly. Forecasting the daily demand can improve the local service provider's access to information and help them manage their short-term supply more effectively. This study developed the forecasting model using real-time data and weather information from Jeju Island, South Korea. Cluster analysis under the rental pattern of the electric kickboard is a component of the forecasting processes. We cannot achieve noticeable results at first because of the low amount of training data. We require a lot of data to produce a solid prediction result. For the sake of the subsequent experimental procedure, we created synthetic time-series data using a generative adversarial networks (GAN) approach and combined the synthetic data with the original data. The outcomes have shown how the GAN-based synthetic data generation approach has the potential to enhance prediction accuracy. We employ an ensemble model to improve prediction results that cannot be achieved using a single regressor model. It is a weighted combination of several base regression models to one meta-regressor. To anticipate the daily demand in this study, we create an ensemble model by merging three separate base machine learning algorithms, namely CatBoost, Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The effectiveness of the suggested strategies was assessed using some evaluation indicators. The forecasting outcomes demonstrate that mixing synthetic data with original data improves the robustness of daily demand forecasting and outperforms other models by generating more agreeable values for suggested assessment measures. The outcomes further show that applying ensemble techniques can reasonably increase the forecasting model's accuracy for daily electric kickboard demand.


Subject(s)
Algorithms , Neural Networks, Computer , Weather , Forecasting , Random Forest
6.
Sensors (Basel) ; 22(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501786

ABSTRACT

Cryptocurrency, often known as virtual or digital currency, is a safe platform and a key component of the blockchain that has recently attracted much interest. Utilizing blockchain technology, bitcoin transactions are recorded in blocks that provide detailed information on all financial transactions. Artificial intelligence (AI) has significant applicability in several industries because of the abundance and processing capacity of large data. One of the main issues is the absence of explanations for AI algorithms in the current decision-making standards. For instance, there is no deep-learning-based reasoning or control for the system's input or output processes. More particularly, the bias for adversarial attacks on the process interface and learning characterizes existing AI systems. This study suggests an AI-based trustworthy architecture that uses decentralized blockchain characteristics such as smart contracts and trust oracles. The decentralized consensuses of AI predictors are also decided by this system using AI, enabling secure cryptocurrency transactions, and utilizing the blockchain technology and transactional network analysis. By utilizing AI for a thorough examination of a network, this system's primary objective is to improve the performance of the bitcoin network in terms of transactions and security. In comparison to other state-of-the-art systems, the results demonstrate that the proposed system can achieve very accurate output.


Subject(s)
Artificial Intelligence , Blockchain , Reproducibility of Results , Knowledge Discovery , Machine Learning
7.
Sensors (Basel) ; 22(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36502223

ABSTRACT

The instability and variable lifetime are the benefits of high efficiency and low-cost issues in lithium-ion batteries.An accurate equipment's remaining useful life prediction is essential for successful requirement-based maintenance to improve dependability and lower total maintenance costs. However, it is challenging to assess a battery's working capacity, and specific prediction methods are unable to represent the uncertainty. A scientific evaluation and prediction of a lithium-ion battery's state of health (SOH), mainly its remaining useful life (RUL), is crucial to ensuring the battery's safety and dependability over its entire life cycle and preventing as many catastrophic accidents as feasible. Many strategies have been developed to determine the prediction of the RUL and SOH of lithium-ion batteries, including particle filters (PFs). This paper develops a novel PF-based technique for lithium-ion battery RUL estimation, combining a Kalman filter (KF) with a PF to analyze battery operating data. The PF method is used as the core, and extreme gradient boosting (XGBoost) is used as the observation RUL battery prediction. Due to the powerful nonlinear fitting capabilities, XGBoost is used to map the connection between the retrieved features and the RUL. The life cycle testing aims to gather precise and trustworthy data for RUL prediction. RUL prediction results demonstrate the improved accuracy of our suggested strategy compared to that of other methods. The experiment findings show that the suggested technique can increase the accuracy of RUL prediction when applied to a lithium-ion battery's cycle life data set. The results demonstrate the benefit of the presented method in achieving a more accurate remaining useful life prediction.


Subject(s)
Electric Power Supplies , Lithium , Ions , Uncertainty
8.
Sensors (Basel) ; 22(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36366249

ABSTRACT

Rapid advancements in the medical field have drawn much attention to automatic emotion classification from EEG data. People's emotional states are crucial factors in how they behave and interact physiologically. The diagnosis of patients' mental disorders is one potential medical use. When feeling well, people work and communicate more effectively. Negative emotions can be detrimental to both physical and mental health. Many earlier studies that investigated the use of the electroencephalogram (EEG) for emotion classification have focused on collecting data from the whole brain because of the rapidly developing science of machine learning. However, researchers cannot understand how various emotional states and EEG traits are related. This work seeks to classify EEG signals' positive, negative, and neutral emotional states by using a stacking-ensemble-based classification model that boosts accuracy to increase the efficacy of emotion classification using EEG. The selected features are used to train a model that was created using a random forest, light gradient boosting machine, and gradient-boosting-based stacking ensemble classifier (RLGB-SE), where the base classifiers random forest (RF), light gradient boosting machine (LightGBM), and gradient boosting classifier (GBC) were used at level 0. The meta classifier (RF) at level 1 is trained using the results from each base classifier to acquire the final predictions. The suggested ensemble model achieves a greater classification accuracy of 99.55%. Additionally, while comparing performance indices, the suggested technique outperforms as compared with the base classifiers. Comparing the proposed stacking strategy to state-of-the-art techniques, it can be seen that the performance for emotion categorization is promising.


Subject(s)
Electroencephalography , Emotions , Humans , Electroencephalography/methods , Emotions/physiology , Machine Learning , Brain
9.
Sensors (Basel) ; 22(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36236757

ABSTRACT

Alzheimer's disease is dementia that impairs one's thinking, behavior, and memory. It starts as a moderate condition affecting areas of the brain that make it challenging to retain recently learned information, causes mood swings, and causes confusion regarding occasions, times, and locations. The most prevalent type of dementia, called Alzheimer's disease (AD), causes memory-related problems in patients. A precise medical diagnosis that correctly classifies AD patients results in better treatment. Currently, the most commonly used classification techniques extract features from longitudinal MRI data before creating a single classifier that performs classification. However, it is difficult to train a reliable classifier to achieve acceptable classification performance due to limited sample size and noise in longitudinal MRI data. Instead of creating a single classifier, we propose an ensemble voting method that generates multiple individual classifier predictions and then combines them to develop a more accurate and reliable classifier. The ensemble voting classifier model performs better in the Open Access Series of Imaging Studies (OASIS) dataset for older adults than existing methods in important assessment criteria such as accuracy, sensitivity, specificity, and AUC. For the binary classification of with dementia and no dementia, an accuracy of 96.4% and an AUC of 97.2% is attained.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods
10.
Sensors (Basel) ; 22(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36146299

ABSTRACT

Wind turbines are widely used worldwide to generate clean, renewable energy. The biggest issue with a wind turbine is reducing failures and downtime, which lowers costs associated with operations and maintenance. Wind turbines' consistency and timely maintenance can enhance their performance and dependability. Still, the traditional routine configuration makes detecting faults of wind turbines difficult. Supervisory control and data acquisition (SCADA) produces reliable and affordable quality data for the health condition of wind turbine operations. For wind power to be sufficiently reliable, it is crucial to retrieve useful information from SCADA successfully. This article proposes a new AdaBoost, K-nearest neighbors, and logistic regression-based stacking ensemble (AKL-SE) classifier to classify the faults of the wind turbine condition monitoring system. A stacking ensemble classifier integrates different classification models to enhance the model's accuracy. We have used three classifiers, AdaBoost, K-nearest neighbors, and logistic regression, as base models to make output. The output of these three classifiers is used as input in the logistic regression classifier's meta-model. To improve the data validity, SCADA data are first preprocessed by cleaning and removing any abnormal data. Next, the Pearson correlation coefficient was used to choose the input variables. The Stacking Ensemble classifier was trained using these parameters. The analysis demonstrates that the suggested method successfully identifies faults in wind turbines when applied to local 3 MW wind turbines. The proposed approach shows the potential for effective wind energy use, which could encourage the use of clean energy.

11.
Comput Methods Programs Biomed ; 224: 107019, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35878483

ABSTRACT

BACKGROUND AND OBJECTIVE: Leukemia represents 30% of all pediatric cancers and is considered the most common malignancy affecting adults and children. Cell differential count obtained from bone marrow aspirate smears is crucial for diagnosing hematologic diseases. Classification of these cell types is an essential task towards analyzing the disease, but it is time-consuming and requires intensive manual intervention. While machine learning has shown excellent outcomes in automating medical diagnosis, it needs ample data to build an efficient model for real-world tasks. This paper aims to generate synthetic data to enhance the classification accuracy of cells obtained from bone marrow aspirate smears. METHODS: A three-stage architecture has been proposed. We first collaborate with experts from the medical domain to prepare a dataset that consolidates microscopic cell images obtained from bone marrow aspirate smears from three different sources. The second stage involves a generative adversarial networks (GAN) model to generate synthetic microscopic cell images. We propose a GAN model consisting of three networks; generator discriminator and classifier. We train the GAN model with the loss function of Wasserstein GAN with gradient penalty (WGAN-GP). Since our GAN has an additional classifier and was trained using WGAN-GP, we named our model C-WGAN-GP. In the third stage, we propose a sequential convolutional neural network (CNN) to classify cells in the original and synthetic dataset to demonstrate how generating synthetic data and utilizing a simple sequential CNN model can enhance the accuracy of cell classification. RESULTS: We validated the proposed C-WGAN-GP and sequential CNN model with various evaluation metrics and achieved a classification accuracy of 96.98% using the synthetic dataset. We have presented each cell type's accuracy, specificity, and sensitivity results. The sequential CNN model achieves the highest accuracy for neutrophils with an accuracy rate of 97.5%. The highest value for sensitivity and specificity are 97.1% and 97%. Our proposed GAN model achieved an inception score of 14.52 ± 0.10, significantly better than the existing GAN models. CONCLUSIONS: Using three network GAN architecture produced more realistic synthetic data than existing models. Sequential CNN model with the synthetic data achieved higher classification accuracy than the original data.


Subject(s)
Bone Marrow , Neural Networks, Computer , Bone Marrow/diagnostic imaging , Child , Humans , Image Processing, Computer-Assisted/methods , Machine Learning , Sensitivity and Specificity
12.
Article in English | MEDLINE | ID: mdl-35742272

ABSTRACT

Social media evidence is the new topic in digital forensics. If social media information is correctly explored, there will be significant support for investigating various offenses. Exploring social media information to give the government potential proof of a crime is not an easy task. Digital forensic investigation is based on natural language processing (NLP) techniques and the blockchain framework proposed in this process. The main reason for using NLP in this process is for data collection analysis, representations of every phase, vectorization phase, feature selection, and classifier evaluation. Applying a blockchain technique in this system secures the data information to avoid hacking and any network attack. The system's potential is demonstrated by using a real-world dataset.


Subject(s)
Blockchain , Social Media , Data Collection , Humans , Natural Language Processing , Social Networking
13.
Int J Mol Sci ; 23(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35409058

ABSTRACT

Nucleic acids are the basic units of deoxyribonucleic acid (DNA) sequencing. Every organism demonstrates different DNA sequences with specific nucleotides. It reveals the genetic information carried by a particular DNA segment. Nucleic acid sequencing expresses the evolutionary changes among organisms and revolutionizes disease diagnosis in animals. This paper proposes a generative adversarial networks (GAN) model to create synthetic nucleic acid sequences of the cat genome tuned to exhibit specific desired properties. We obtained the raw sequence data from Illumina next generation sequencing. Various data preprocessing steps were performed using Cutadapt and DADA2 tools. The processed data were fed to the GAN model that was designed following the architecture of Wasserstein GAN with gradient penalty (WGAN-GP). We introduced a predictor and an evaluator in our proposed GAN model to tune the synthetic sequences to acquire certain realistic properties. The predictor was built for extracting samples with a promoter sequence, and the evaluator was built for filtering samples that scored high for motif-matching. The filtered samples were then passed to the discriminator. We evaluated our model based on multiple metrics and demonstrated outputs for latent interpolation, latent complementation, and motif-matching. Evaluation results showed our proposed GAN model achieved 93.7% correlation with the original data and produced significant outcomes as compared to existing models for sequence generation.


Subject(s)
Adenosine Deaminase , Image Processing, Computer-Assisted , DNA , Image Processing, Computer-Assisted/methods , Intercellular Signaling Peptides and Proteins
14.
Sensors (Basel) ; 22(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35270900

ABSTRACT

The popularity of cryptocurrency in recent years has gained a lot of attention among researchers and in academic working areas. The uncontrollable and untraceable nature of cryptocurrency offers a lot of attractions to the people in this domain. The nature of the financial market is non-linear and disordered, which makes the prediction of exchange rates a challenging and difficult task. Predicting the price of cryptocurrency is based on the previous price inflations in research. Various machine learning algorithms have been applied to predict the digital coins' exchange rate, but in this study, we present the exchange rate of cryptocurrency based on applying the machine learning XGBoost algorithm and blockchain framework for the security and transparency of the proposed system. In this system, data mining techniques are applied for qualified data analysis. The applied machine learning algorithm is XGBoost, which performs the highest prediction output, after accuracy measurement performance. The prediction process is designed by using various filters and coefficient weights. The cross-validation method was applied for the phase of training to improve the performance of the system.


Subject(s)
Knowledge Discovery , Machine Learning , Algorithms , Data Mining , Humans
15.
Biology (Basel) ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205142

ABSTRACT

Every year approximately 1.24 million people are diagnosed with blood cancer. While the rate increases each year, the availability of data for each kind of blood cancer remains scarce. It is essential to produce enough data for each blood cell type obtained from bone marrow aspirate smears to diagnose rare types of cancer. Generating data would help easy and quick diagnosis, which are the most critical factors in cancer. Generative adversarial networks (GAN) are the latest emerging framework for generating synthetic images and time-series data. This paper takes microscopic cell images, preprocesses them, and uses a hybrid GAN architecture to generate synthetic images of the cell types containing fewer data. We prepared a single dataset with expert intervention by combining images from three different sources. The final dataset consists of 12 cell types and has 33,177 microscopic cell images. We use the discriminator architecture of auxiliary classifier GAN (AC-GAN) and combine it with the Wasserstein GAN with gradient penalty model (WGAN-GP). We name our model as WGAN-GP-AC. The discriminator in our proposed model works to identify real and generated images and classify every image with a cell type. We provide experimental results demonstrating that our proposed model performs better than existing individual and hybrid GAN models in generating microscopic cell images. We use the generated synthetic data with classification models, and the results prove that the classification rate increases significantly. Classification models achieved 0.95 precision and 0.96 recall value for synthetic data, which is higher than the original, augmented, or combined datasets.

16.
Sensors (Basel) ; 21(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064674

ABSTRACT

The prediction of taxi demand service has become a recently attractive area of research along with large-scale and potential applications in the intelligent transportation system. The demand process is divided into two main parts: Picking-up and dropping-off demand based on passenger habit. Taxi demand prediction is a great concept for drivers and passengers, and is designed platforms for ride-hailing and municipal managers. The majority of research has focused on forecasting the pick-up part of demand service and specifying the interconnection of spatial and temporal correlations. In this study, the main focus is to overcome the access point of non-registered users for having fake transactions using taxi services and predicting taxi demand pick-up and drop-off information. The integration of machine learning techniques and blockchain framework is considered a possible solution for this problem. The blockchain technique was selected as an effective technique for protecting and controlling the real-time system. Historical data analysis was processed by extracting the three higher related sections for the intervening time, namely closeness and trend. Next, the pick-up and drop-off taxi prediction task was processed based on constructing the components of multi-task learning and spatiotemporal feature extraction. The combination of feature embedding performance and Long Short-Term Memory (LSTM) obtain the pick-up and drop-off correlation by fusing the historical data spatiotemporal features. Finally, the taxi demand pick-up and drop-off prediction were processed based on the combination of the external factors. The experimental result is based on a real dataset in Jeju Island, South Korea, to show the proposed system's efficacy and performance compared with other state-of-art models.

17.
J Healthc Eng ; 2021: 6695518, 2021.
Article in English | MEDLINE | ID: mdl-33777347

ABSTRACT

The 3D convolutional neural network is able to make use of the full nonlinear 3D context information of lung nodule detection from the DICOM (Digital Imaging and Communications in Medicine) images, and the Gradient Class Activation has shown to be useful for tailoring classification tasks and localization interpretation for fine-grained features and visual explanation for the internal working. Gradient-weighted class activation plays a crucial role for clinicians and radiologists in terms of trusting and adopting the model. Practitioners not only rely on a model that can provide high precision but also really want to gain the respect of radiologists. So, in this paper, we explored the lung nodule classification using the improvised 3D AlexNet with lightweight architecture. Our network employed the full nature of the multiview network strategy. We have conducted the binary classification (benign and malignant) on computed tomography (CT) images from the LUNA 16 database conglomerate and database image resource initiative. The results obtained are through the 10-fold cross-validation. Experimental results have shown that the proposed lightweight architecture achieved a superior classification accuracy of 97.17% on LUNA 16 dataset when compared with existing classification algorithms and low-dose CT scan images as well.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Early Detection of Cancer , Humans , Lung Neoplasms/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/methods
18.
Sensors (Basel) ; 21(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672464

ABSTRACT

Smart manufacturing systems are growing based on the various requests for predicting the reliability and quality of equipment. Many machine learning techniques are being examined to that end. Another issue which considers an important part of industry is data security and management. To overcome the problems mentioned above, we applied the integrated methods of blockchain and machine learning to secure system transactions and handle a dataset to overcome the fake dataset. To manage and analyze the collected dataset, big data techniques were used. The blockchain system was implemented in the private Hyperledger Fabric platform. Similarly, the fault diagnosis prediction aspect was evaluated based on the hybrid prediction technique. The system's quality control was evaluated based on non-linear machine learning techniques, which modeled that complex environment and found the true positive rate of the system's quality control approach.

19.
Entropy (Basel) ; 23(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562843

ABSTRACT

Image segmentation plays a central role in a broad range of applications, such as medical image analysis, autonomous vehicles, video surveillance and augmented reality. Portrait segmentation, which is a subset of semantic image segmentation, is widely used as a preprocessing step in multiple applications such as security systems, entertainment applications, video conferences, etc. A substantial amount of deep learning-based portrait segmentation approaches have been developed, since the performance and accuracy of semantic image segmentation have improved significantly due to the recent introduction of deep learning technology. However, these approaches are limited to a single portrait segmentation model. In this paper, we propose a novel approach using an ensemble method by combining multiple heterogeneous deep-learning based portrait segmentation models to improve the segmentation performance. The Two-Models ensemble and Three-Models ensemble, using a simple soft voting method and weighted soft voting method, were experimented. Intersection over Union (IoU) metric, IoU standard deviation and false prediction rate were used to evaluate the performance. Cost efficiency was calculated to analyze the efficiency of segmentation. The experiment results show that the proposed ensemble approach can perform with higher accuracy and lower errors than single deep-learning-based portrait segmentation models. The results also show that the ensemble of deep-learning models typically increases the use of memory and computing power, although it also shows that the ensemble of deep-learning models can perform more efficiently than a single model with higher accuracy using less memory and less computing power.

20.
Biology (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287366

ABSTRACT

Automating medical diagnosis and training medical students with real-life situations requires the accumulation of large dataset variants covering all aspects of a patient's condition. For preventing the misuse of patient's private information, datasets are not always publicly available. There is a need to generate synthetic data that can be trained for the advancement of public healthcare without intruding on patient's confidentiality. Currently, rules for generating synthetic data are predefined and they require expert intervention, which limits the types and amount of synthetic data. In this paper, we propose a novel generative adversarial networks (GAN) model, named SynSigGAN, for automating the generation of any kind of synthetic biomedical signals. We have used bidirectional grid long short-term memory for the generator network and convolutional neural network for the discriminator network of the GAN model. Our model can be applied in order to create new biomedical synthetic signals while using a small size of the original signal dataset. We have experimented with our model for generating synthetic signals for four kinds of biomedical signals (electrocardiogram (ECG), electroencephalogram (EEG), electromyography (EMG), photoplethysmography (PPG)). The performance of our model is superior wheen compared to other traditional models and GAN models, as depicted by the evaluation metric. Synthetic biomedical signals generated by our approach have been tested while using other models that could classify each signal significantly with high accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...