Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33595430

ABSTRACT

Infections with Basal Core Promoter (BCP) (A1762T/G1764A) and Pre-Core (PC) (G1896A) hepatitis B virus HBeAg mutants are associated with severe liver injury. We analysed host cell responses in HepG2/C3A, hepatoma cells transfected with infectious clones developed from genotype D wild type (WT) and BCP/PC mutant (MT) viruses isolated from an acute resolved and an acute liver failure hepatitis B case respectively. Cells transfected with MT virus construct showed ~55 % apoptosis and with WT ~30 % apoptosis at 72 h. To determine possible roles of HBe and HBx proteins in apoptosis, we cloned these genes and co-transfected cells with WT+HBe/HBx or MT+HBe/HBx constructs. Co-expression of HBe protein improved cell viability significantly in both WT and MT virus constructs, indicating an important role of HBe in protecting cells. RNA sequencing analysis carried out at 12 and 72 h post-transfection with WT virus construct showed enrichment of innate/adaptive immune response-activating signal transduction, cell survival and amino acid/nucleic acid biosynthetic pathways at 12 and 72 h. By contrast, MT virus construct showed enrichment in host defence pathways and some biosynthetic pathways at the early time point (12 h), and inflammatory response, secretary granule, regulation of membrane potential and stress response regulatory pathways at the late time point (72 h). There was a significant down-regulation of genes involved in endoplasmic reticulum and mitochondrial functions and metabolism with MT construct and this possibly led to induction of apoptosis in cells. Considering rapid apoptotic changes in cells transfected with MT construct, it can be speculated that HBeAg plays a crucial role in cell survival. It enhances induction of metabolic and synthetic pathways and facilitates management of cellular stress that is induced due to hepatitis B virus infection/replication.


Subject(s)
Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Mutation , Promoter Regions, Genetic , Viral Core Proteins/genetics , Apoptosis , DNA, Viral/genetics , Gene Expression Profiling , Genotype , Hepatitis B Core Antigens/genetics , Hepatitis B e Antigens/genetics , Hepatitis B, Chronic/pathology , Humans , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...