Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Prev Nutr Food Sci ; 29(1): 18-30, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38576885

ABSTRACT

Functional food products remain the focus of current market trends toward healthier nutrition. The consumption of meat-based functional foods has been a topic of interest in food innovation since some of these products generate controversy due to their possible adverse effects on health. However, studies have demonstrated that meat-based functional products are considered an opportunity to improve the nutritional profile of meat products through the addition of biologically valuable components and to meet the specific needs of consumers. In this sense, some strategies and techniques are applied for processing and developing functional meat products, such as modifying carcass composition through feeding, reformulating meat products, and processing conditions. This review focuses on presenting developed and evaluated strategies that allow the production of healthy and functional meat foods, which application has successfully achieved the sensory, nutritional, and technological parameters mainly affected by such application.

2.
Heliyon ; 9(4): e14937, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025883

ABSTRACT

Waste processing from fish and seafood manufacturers represents a sustainable option to prevent environmental contamination, and their byproducts offer different benefits. Transforming fish and seafood waste into valuable compounds that present nutritional and functional properties compared to mammal products becomes a new alternative in Food Industry. In this review, collagen, protein hydrolysates, and chitin from fish and seafood byproducts were selected to explain their chemical characteristics, production methodologies, and possible future perspectives. These three byproducts are gaining a significant commercial market, impacting the food, cosmetic, pharmaceutical, agriculture, plastic, and biomedical industries. For this reason, the extraction methodologies, advantages, and disadvantages are discussed in this review.

3.
Foods ; 11(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36359940

ABSTRACT

Rice bran (RB) is a valuable byproduct derived from rice milling that represents an excellent opportunity for dietary inclusion. Bioactive components with antioxidant potential have been reported in RB, gaining the considerable attention of researchers. However, RB requires a stabilization process after milling to prevent it from becoming rancid and promote its commercial consumption. The aim of this study was to evaluate the effects of substituting stabilized rice bran (SRB) for wheat flour at levels of 10, 15, 20 and 25% on the proximate composition, dietary fiber, dough rheology, antioxidant properties, content of bioactive compounds, and sensory attributes of white wheat-based bread. Results indicated that the incorporation of SRB increased the bread's insoluble dietary fiber, phytic acid, total polyphenol content, γ-oryzanol, γ-aminobutyric acid, and antioxidant properties, while decreased its water absorption capacity, elasticity, volume, ß-glucans, and soluble dietary fiber content. Moreover, substituting wheat flour for SRB at levels higher than 15% affected sensory attributes, such as color, odor, flavor, and softness. This study highlights the potential application of SRB flour in bread-making to increase nutritional, and functional properties of white wheat bread.

4.
Food Chem ; 173: 298-304, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25466026

ABSTRACT

The effect of germination conditions on the nutritional benefits of germinated brown rice flour (GBR) bread has been determined. The proximate composition, phytic acid, in vitro protein digestibility and in vitro enzymatic hydrolysis of starch, glucose and starch content, as well as the most relevant bioactive compounds (GABA, γ-oryzanol and total phenolic compounds) and antioxidant activity of breads prepared with GBR at different germination conditions was determined. When comparing different germination times (0 h, 12 h, 24 h and 48 h), germination for 48 h provides GBR bread with nutritionally superior quality on the basis of its higher content of protein, lipids and bioactive compounds (GABA and polyphenols), increased antioxidant activity and reduced phytic acid content and glycaemic index, although a slight decrease in in vitro protein digestibility was detected. Overall, germination seems to be a natural and sustainable way to improving the nutritional quality of gluten-free rice breads.


Subject(s)
Bread/analysis , Germination , Nutritive Value , Oryza/chemistry , Antioxidants/analysis , Flour/analysis , Food Handling , Glycemic Index , Phenols/analysis , Phenylpropionates/analysis , Phytic Acid/analysis , Starch/chemistry , gamma-Aminobutyric Acid/analysis
5.
Plant Foods Hum Nutr ; 69(3): 261-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086701

ABSTRACT

Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.


Subject(s)
Dietary Fiber/analysis , Germination , Nutritive Value , Oryza/chemistry , Phytic Acid/analysis , Dietary Carbohydrates/analysis , Dietary Fats/analysis , Dietary Proteins/analysis , Food Handling/methods , Hydrolysis
6.
Food Chem ; 152: 407-14, 2014.
Article in English | MEDLINE | ID: mdl-24444955

ABSTRACT

Germinated brown rice (GBR) is considered a healthy alternative to white rice in the fight against chronic diseases. As the functional quality of GBR depends on genotype and germination conditions, the objectives were to identify suitable Ecuadorian brown rice cultivars and optimal germination time and temperature to maximise γ-aminobutyric acid (GABA), total phenolics compounds (TPC) and antioxidant activity of GBR. Regression models for the prediction of phytochemical composition and antioxidant activity in GBR were also obtained. Germination improved GABA, TPC and antioxidant activity in all cultivars. Maximum GABA and antioxidant activity were attained at 34 °C for 96 h, while the highest TPC was found at 28 °C for 96 h in all cultivars. GBR cv. GO displayed the highest antioxidant activity and cv. 15 was the most effective at accumulating GABA and TPC in the optimal germination conditions. Therefore, Ecuadorian GBR could be used for the preparation of functional foods serving as preventative strategies in combating chronic diseases.


Subject(s)
Antioxidants/chemistry , Germination , Oryza/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Seeds/growth & development , Ecuador , Oryza/growth & development , Phenols/chemistry , Seeds/chemistry , gamma-Aminobutyric Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...