Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 11(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35883771

ABSTRACT

Plants play a pivotal role in drug discovery, constituting 50% of modern pharmacopeia. Many human diseases, including age-related degenerative diseases, converge onto common cellular oxidative stress pathways. This provides an opportunity to develop broad treatments to treat a wide range of diseases in the ageing population. Here, we characterize and assess the toxicological effects of finger lime (Citrus australasica), mountain pepper (Tasmannia lanceolata), and small-leaved tamarind (Diploglottis australis) extracts. The characterization demonstrates that these Australian native plants have antioxidant potential and, importantly, they have high concentrations of distinct combinations of different antioxidant classes. Using zebrafish larvae as a high-throughput pre-clinical in vivo toxicology screening model, our experiment effectively discriminates which of these extracts (and at what exposure levels) are suitable for development towards future therapies. The LC50-96h for finger lime and tamarind were >480 mg/L, and 1.70 mg/L for mountain pepper. Critically, this work shows that adverse effects are not correlated to the properties of these antioxidants, thus highlighting the need for combining characterization and in vivo screening to identify the most promising plant extracts for further development. Thus, we present a high-throughput pre-clinical screening that robustly tests natural plant products to utilize the diversity of antioxidant compounds for drug development.

2.
Ageing Res Rev ; 75: 101572, 2022 03.
Article in English | MEDLINE | ID: mdl-35065274

ABSTRACT

As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.


Subject(s)
Glaucoma , Neurodegenerative Diseases , Aging , Antioxidants/metabolism , Antioxidants/therapeutic use , Glaucoma/drug therapy , Glaucoma/pathology , Humans , Neurodegenerative Diseases/pathology , Oxidation-Reduction , Oxidative Stress
3.
Nanomedicine (Lond) ; 17(3): 167-179, 2022 02.
Article in English | MEDLINE | ID: mdl-35048742

ABSTRACT

Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.


Subject(s)
Curcumin , Nanoparticles , Animals , Drug Carriers , Lipids , Liposomes , Mice , Nanoparticles/toxicity , Particle Size
4.
J Colloid Interface Sci ; 557: 757-766, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31569055

ABSTRACT

Silencing RNA (siRNA) technologies attract significant interest as a therapeutic tool for a large number of diseases. However, the medical translation of this technology is hampered by the lack of effective delivery vehicles for siRNAs in cytosol that prevent their degradation in the bloodstream. The use of molecular complexes based on polyamines have great potential for siRNA delivery as polyamines can protect the siRNA during circulation and at the same time favor siRNA translocation in cytosol. Here, nanoparticles are prepared by complexation of poly(allylamine hydrochloride) (PAH) and siRNA varying the ratio of nitrogen groups from PAH to phosphate groups from siRNA (N/P ratio). Nanoparticles are characterized by transmission electron microscopy and dynamic light scattering. The stability of complexes of green rhodamine labelled PAH (G-PAH) and Cy5 labelled siRNA (R-siRNA) at different pHs and in cell media is studied by fluorescence cross-correlation spectroscopy (FCCS). FCCS studies show that the nanoparticles are stable at physiological pH and in cell media but they disassemble at acidic pH. An optimal N/P ratio of 2 is identified in terms of stability in media, degradation at endosomal pH and toxicity. The intracellular fate of the complexes is studied following uptake in A549 cells. The cross-correlation between G-PAH and R-siRNA decreases substantially 24 h after uptake, while diffusion times of siRNA decrease indicating that the complexes disassemble, liberating the siRNAs. The release of siRNAs into the cytosol is confirmed with parallel confocal laser scanning microscopy. Flow cytometry studies show that PAH/siRNA nanoparticles are effective at silencing green fluorescent protein expression at low N/P ratios at which polyethylenimine/siRNA shows no significant silencing.


Subject(s)
Nanoparticles/chemistry , Polyamines/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , A549 Cells , Cell Membrane Permeability , Cell Survival , Cytosol/metabolism , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/genetics , Humans , Hydrogen-Ion Concentration , Optical Imaging , Polyethyleneimine/chemistry , RNA, Small Interfering/genetics , Transfection
5.
Toxics ; 7(1)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30832222

ABSTRACT

Silver nanoparticles (AgNPs) are used intensively in medical and industrial applications. Environmental concerns have arisen from the potential release of this material into aquatic ecosystems. The aims of this research were to evaluate the potential accumulation of silver in the whole body of organisms and analyze the effects of AgNPs on the survival and reproduction of the snail Biomphalaria glabrata. Results show slow acute toxicity with a 10-day LC50 of 18.57 mg/L and an effective decrease in the eggs and egg clutches per organism exposed to tested concentrations. Based on these data, the No Observed Effect Concentration (NOEC) observed was <1 mg/L for snail reproduction. For silver accumulation, we observed that uptake was faster than elimination, which was very slow and still incomplete 35 days after the end of the experiment. However, the observed accumulation was not connected with a concentration/response relationship, since the amount of silver was not equivalent to a higher reproductive effect. The data observed show that AgNPs are toxic to B. glabrata, and suggest that the snail has internal mechanisms to combat the presence of Ag in its body, ensuring survival and reduced reproduction and showing that the species seems to be a potential indicator for Ag presence in contaminated aquatic ecosystems.

6.
Nanotoxicology ; 13(3): 305-325, 2019 04.
Article in English | MEDLINE | ID: mdl-30582398

ABSTRACT

Nanoceria has a broad variety of industrial and pharmacological applications due to its antioxidant activity. Nanoceria can be modified by surface coating with polyelectrolyte brushes. Brushes can increase the surface charge of nanoceria, providing greater aqueous stability while reducing agglomeration. However, surface-coating also behaves as a barrier around nanoceria, affecting its redox equilibrium and, hence, its biological and toxicological properties. In the present study, we examined whether bare nanoceria (CeO2; 80-150 nm) and nanoceria modified by surface polymer brush, using negatively charged polyacrylic acid (CeO2@PAA) and positively charged poly (2-(methacryloyloxy)ethyl-trimethyl-ammonium chloride (CeO2@PMETAC), could induce systemic toxicity. As CeO2 has limited colloidal stability, which might result in vascular occlusion, intraperitoneal injection was used instead of intravenous administration. C57Bl/6 mice were four times injected with three different doses of each nanoceria-based sample (corresponding to 1.8, 5.3 and 16 mg Ce/kg BW/administration) for a total period of 14 days. CeO2@PMETAC induced a significant dose-dependent neutrophilia. Histopathological evaluation showed inflammatory processes in the capsule of liver, kidney, and spleen of animals at all doses of CeO2@PMETAC, and with the highest dose of CeO2@PAA and CeO2. However, none of the nanoceria-based samples tested increased the level of DNA damage or micronuclei in blood cells, even though Ce was detected by inductively coupled plasma mass spectrometry analyses in the bone marrow. Only CeO2@PMETAC induced the presence of megakaryocytes in the spleen. A higher accumulation of Ce in mononuclear phagocyte system organs (liver, spleen and bone marrow) was observed after CeO2@PMETAC treatment compared with CeO2@PAA and CeO2.


Subject(s)
Acrylic Resins/chemistry , Cerium/toxicity , Nanoparticles/toxicity , Polymethacrylic Acids/chemistry , Quaternary Ammonium Compounds/chemistry , Viscera/drug effects , Animals , Cerium/chemistry , DNA Damage , Dose-Response Relationship, Drug , Female , Injections, Intraperitoneal , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Organ Specificity , Particle Size , Surface Properties , Thermogravimetry , Viscera/pathology
7.
J Hazard Mater ; 353: 173-181, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29674092

ABSTRACT

The use of silver nanoparticles (AgNPs) result in an inevitable contact with aquatic environments. Here we study the behavior of AgNPs and the developmental toxicity in zebrafish embryos exposed to these nanoparticles (0-10 mg/L) with and without the presence of HA (20 mg/L), using zebrafish facility water (ZFW) and zebrafish growing media (ZGM). The presence of cations and HA gave rise to a decrease in Ag ion release and ζ-potential, an increase in the hydrodynamic diameter and oxidation of the AgNP surface. The results show that the presence of HA and cations in the media, as well as the silver speciation, i.e., the unusual presence of Ag3+, decreases the toxicity of AgNPs (LC50AgNPs: 1.19 mg/L; LC50AgNPs + HA: 3.56 mg/L), as well as silver bioavailability and toxicity in zebrafish embryos. Developmental alterations and the LC50 (1.19 mg/L) of AgNPs in ZFW were more relevant (p ≤ 0.05) than for AgNPs in ZGM (LC50 ˃ 10 mg/L). It was demonstrated that the bioaccumulation and toxicity of AgNPs depends on several factors including AgNPs concentration, nanoparticle aggregation, dissolved silver ions, speciation of silver ions, the amount of salt in the environment, the presence of humic substances and others, and different combinations of all of these factors.


Subject(s)
Humic Substances , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Embryo, Nonmammalian/drug effects , Larva/drug effects , Larva/metabolism , Magnesium Sulfate/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Sodium Bicarbonate/chemistry , Surface Properties , Water Pollutants, Chemical/chemistry , Zebrafish
8.
ACS Appl Mater Interfaces ; 9(44): 38242-38254, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29039643

ABSTRACT

Silencing RNA (siRNA) technologies emerge as a promising therapeutic tool for the treatment of multiple diseases. An ideal nanocarrier (NC) for siRNAs should be stable at physiological pH and release siRNAs in acidic endosomal pH, fulfilling siRNA delivery only inside cells. Here, we show a novel application of polyamine phosphate NCs (PANs) based on their capacity to load negatively charged nucleic acids and their pH stability. PANs are fabricated by complexation of phosphate anions from phosphate buffer solution (PB) with the amine groups of poly(allylamine) hydrochloride as carriers for siRNAs. PANs are stable in a narrow pH interval, from 7 to 9, and disassemble at pH's higher than 9 and lower than 6. siRNAs are encapsulated by complexation with poly(allylamine) hydrochloride before or after PAN formation. PANs with encapsulated siRNAs are stable in cell media. Once internalized in cells following endocytic pathways, PANs disassemble at the low endosomal pH and release the siRNAs into the cytoplasm. Confocal laser scanning microscopy (CLSM) images of Rhodamine Green labeled PANs (RG-PANs) with encapsulated Cy3-labeled siRNA in A549 cells show that siRNAs are released from the PANs. Colocalization experiments with labeled endosomes and either labeled siRNAs prove the translocation of siRNAs into the cytosol. As a proof of concept, it is shown that PANs with encapsulated green fluorescence protein (GFP) siRNAs silence GFP in A549 cells expressing this protein. Silencing efficacy was evaluated by flow cytometry, CLSM, and Western blot assays. These results open the way for the use of poly(allylamine) phosphate nanocarriers for the intracellular delivery of genetic materials.


Subject(s)
Allylamine/chemistry , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Nanoparticles , Phosphates , RNA, Small Interfering
9.
Sci Total Environ ; 551-552: 228-37, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26878635

ABSTRACT

Magnetic exfoliated vermiculite is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. It was developed primarily to mitigate pollution, but the possible adverse impacts of its application have not yet been evaluated. In this context, the acute toxicity of magnetic exfoliated vermiculite and exfoliated vermiculite was herein assessed by genotoxic and histopathological biomarkers in zebrafish (Danio rerio). DNA fragmentation was statistically significant for all groups exposed to the magnetic exfoliated vermiculite and for fish exposed to the highest concentration (200mg/L) of exfoliated vermiculite, whereas the micronucleus frequency, nuclear abnormalities and histopathological alterations were not statistically significant for the fish exposed to these materials. In the intestinal lumen, epithelial cells and goblet cells, we found the presence of magnetic exfoliated vermiculite and exfoliated vermiculite, but no alterations or presence of the materials-test in the gills or liver were observed. Our findings suggest that the use of magnetic exfoliated vermiculite and exfoliated vermiculite during standard ecotoxicological assays caused DNA damage in D. rerio, whose alterations may be likely to be repaired, indicating that the magnetic nanoparticles have the ability to promote genotoxic damage, such as DNA fragmentation, but not mutagenic effects.


Subject(s)
Aluminum Silicates/toxicity , Mutagens/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Biomarkers/metabolism
10.
Int J Nanomedicine ; 8: 3467-77, 2013.
Article in English | MEDLINE | ID: mdl-24092971

ABSTRACT

Despite recent advances in nonsteroidal anti-inflammatory drug (NSAID) formulations, the design of targeted delivery systems to improve the efficacy and reduce side effects of NSAIDs continues to be a focus of much research. Enteric nanoparticles have been recognized as a potential system to reduce gastrointestinal irritations caused by NSAIDs. The aim of this study was to evaluate the effect of EUDRAGIT® L100, polyethylene glycol, and polysorbate 80 on encapsulation efficiency of indomethacin within enteric nanoparticles. Formulations were developed based on a multilevel factorial design (three factors, two levels). The amount of polyethylene glycol was shown to be the factor that had the greatest influence on the encapsulation efficiency (evaluated response) at 95% confidence level. Some properties of nanoparticles like process yield, drug-polymer interaction, particle morphology, and in vitro dissolution profile, which could affect biological performance, have also been evaluated.


Subject(s)
Body Fluids/chemistry , Indomethacin/chemistry , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Absorption , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Diffusion , Drug Compounding/methods , Indomethacin/administration & dosage , Particle Size , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...