Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; : e14205, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760909

ABSTRACT

ATP citrate lyase (ACLY) inhibitors have the potential of modulating central processes in protein, carbohydrate, and lipid metabolism, which can have relevant physiological consequences in aging and age-related diseases. Here, we show that hepatic phospho-active ACLY correlates with overweight and Model for End-stage Liver Disease score in humans. Wild-type mice treated chronically with the ACLY inhibitor potassium hydroxycitrate exhibited delayed early mortality. In AML12 hepatocyte cultures, the ACLY inhibitors potassium hydroxycitrate, SB-204990, and bempedoic acid fostered lipid accumulation, which was also observed in the liver of healthy-fed mice treated with potassium hydroxycitrate. Analysis of soleus tissue indicated that potassium hydroxycitrate produced the modulation of wound healing processes. In vivo, potassium hydroxycitrate modulated locomotor function toward increased wire hang performance and reduced rotarod performance in healthy-fed mice, and improved locomotion in mice exposed to cardiotoxin-induced muscle atrophy. Our findings implicate ACLY and ACLY inhibitors in different aspects of aging and muscle regeneration.

2.
Cell Metab ; 36(1): 3-5, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38171337

ABSTRACT

Apoptosis supports tissue homeostasis and prevents immune disorders by removing damaged and functionally aberrant cells. Here, Ou et al. utilized genetic, pharmacological, and proteomic approaches focused on sulfur amino acid catabolism to discover that hydrogen sulfide (H2S) release during apoptosis suppresses Th17 cell differentiation, thus providing therapeutic targets for autoimmune diseases.


Subject(s)
Hydrogen Sulfide , Proteomics , Apoptosis , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Homeostasis
3.
Commun Biol ; 6(1): 250, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890357

ABSTRACT

ATP-citrate lyase is a central integrator of cellular metabolism in the interface of protein, carbohydrate, and lipid metabolism. The physiological consequences as well as the molecular mechanisms orchestrating the response to long-term pharmacologically induced Acly inhibition are unknown. We report here that the Acly inhibitor SB-204990 improves metabolic health and physical strength in wild-type mice when fed with a high-fat diet, while in mice fed with healthy diet results in metabolic imbalance and moderated insulin resistance. By applying a multiomic approach using untargeted metabolomics, transcriptomics, and proteomics, we determined that, in vivo, SB-204990 plays a role in the regulation of molecular mechanisms associated with aging, such as energy metabolism, mitochondrial function, mTOR signaling, and folate cycle, while global alterations on histone acetylation are absent. Our findings indicate a mechanism for regulating molecular pathways of aging that prevents the development of metabolic abnormalities associated with unhealthy dieting. This strategy might be explored for devising therapeutic approaches to prevent metabolic diseases.


Subject(s)
ATP Citrate (pro-S)-Lyase , Lipid Metabolism , Animals , Mice , ATP Citrate (pro-S)-Lyase/metabolism , Diet, High-Fat , Aging
4.
Aging Cell ; 19(11): e13260, 2020 11.
Article in English | MEDLINE | ID: mdl-33048427

ABSTRACT

Thyroid function is central in the control of physiological and pathophysiological processes. Studies in animal models and human research have determined that thyroid hormones modulate cellular processes relevant for aging and for the majority of age-related diseases. While several studies have associated mild reductions on thyroid hormone function with exceptional longevity in animals and humans, alterations in thyroid hormones are serious medical conditions associated with unhealthy aging and premature death. Moreover, both hyperthyroidism and hypothyroidism have been associated with the development of certain types of diabetes and cancers, indicating a great complexity of the molecular mechanisms controlled by thyroid hormones. In this review, we describe the latest findings in thyroid hormone research in the field of aging, diabetes, and cancer, with a special focus on hepatocellular carcinomas. While aging studies indicate that the direct modulation of thyroid hormones is not a viable strategy to promote healthy aging or longevity and the development of thyromimetics is challenging due to inefficacy and potential toxicity, we argue that interventions based on the use of modulators of thyroid hormone function might provide therapeutic benefit in certain types of diabetes and cancers.


Subject(s)
Aging/physiology , Diabetes Mellitus/physiopathology , Neoplasms/physiopathology , Thyroid Gland/physiopathology , Thyroid Hormones/metabolism , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...