Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 23(8): 964-974, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28692064

ABSTRACT

Polo-like kinase 1 (PLK1), an essential regulator of cell division, is currently undergoing clinical evaluation as a target for cancer therapy. We report an unexpected function of Plk1 in sustaining cardiovascular homeostasis. Plk1 haploinsufficiency in mice did not induce obvious cell proliferation defects but did result in arterial structural alterations, which frequently led to aortic rupture and death. Specific ablation of Plk1 in vascular smooth muscle cells (VSMCs) led to reduced arterial elasticity, hypotension, and an impaired arterial response to angiotensin II in vivo. Mechanistically, we found that Plk1 regulated angiotensin II-dependent activation of RhoA and actomyosin dynamics in VSMCs in a mitosis-independent manner. This regulation depended on Plk1 kinase activity, and the administration of small-molecule Plk1 inhibitors to angiotensin II-treated mice led to reduced arterial fitness and an elevated risk of aneurysm and aortic rupture. We thus conclude that a partial reduction of Plk1 activity that does not block cell division can nevertheless impair aortic homeostasis. Our findings have potentially important implications for current approaches aimed at PLK1 inhibition for cancer therapy.


Subject(s)
Angiotensin II/metabolism , Aortic Aneurysm/genetics , Aortic Rupture/genetics , Cell Cycle Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , rho GTP-Binding Proteins/metabolism , Animals , Aorta/metabolism , Aorta/ultrastructure , Aortic Aneurysm/metabolism , Aortic Rupture/metabolism , Blood Pressure , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Proliferation/genetics , Fluorescent Antibody Technique , Gene Knockdown Techniques , Haploinsufficiency , Homeostasis/genetics , Hypotension/genetics , Immunoblotting , Mice , Microscopy, Electron, Transmission , Mitosis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Real-Time Polymerase Chain Reaction , Vascular Stiffness/genetics , rhoA GTP-Binding Protein , Polo-Like Kinase 1
2.
Cell Rep ; 12(10): 1594-605, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26321631

ABSTRACT

Conquering obesity has become a major socioeconomic challenge. Here, we show that reduced expression of the miR-25-93-106b cluster, or miR-93 alone, increases fat mass and, subsequently, insulin resistance. Mechanistically, we discovered an intricate interplay between enhanced adipocyte precursor turnover and increased adipogenesis. First, miR-93 controls Tbx3, thereby limiting self-renewal in early adipocyte precursors. Second, miR-93 inhibits the metabolic target Sirt7, which we identified as a major driver of in vivo adipogenesis via induction of differentiation and maturation of early adipocyte precursors. Using mouse parabiosis, obesity in mir-25-93-106b(-/-) mice could be rescued by restoring levels of circulating miRNA and subsequent inhibition of Tbx3 and Sirt7. Downregulation of miR-93 also occurred in obese ob/ob mice, and this phenocopy of mir-25-93-106b(-/-) was partially reversible with injection of miR-93 mimics. Our data establish miR-93 as a negative regulator of adipogenesis and a potential therapeutic option for obesity and the metabolic syndrome.


Subject(s)
Adiposity , MicroRNAs/physiology , Sirtuins/genetics , T-Box Domain Proteins/genetics , 3T3-L1 Cells , Adipocytes/physiology , Adipogenesis , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Cell Self Renewal , Female , Insulin Resistance , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , RNA Interference , Sirtuins/metabolism , T-Box Domain Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...