Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(10)2021 05 14.
Article in English | MEDLINE | ID: mdl-34069083

ABSTRACT

Haloferaxmediterranei is a haloarchaeon of high interest in biotechnology because it produces and mobilizes intracellular polyhydroxyalkanoate (PHA) granules during growth under stress conditions (limitation of phosphorous in the culture media), among other interesting metabolites (enzymes, carotenoids, etc.). The capability of PHA production by microbes can be monitored with the use of staining-based methods. However, the staining of haloarchaea cells is a challenging task; firstly, due to the high ionic strength of the medium, which is inappropriate for most of dyes, and secondly, due to the low permeability of the haloarchaea S-layer to macromolecules. In this work, Haloferax mediterranei is used as a halophilic archaeon model to describe an optimized protocol for the visualization and analysis of intracellular PHA granules in living cells. The method is based on double-fluorescence staining using Nile red and SYBR Green by confocal fluorescence microscopy. Thanks to this method, the capability of PHA production by new haloarchaea isolates could be easily monitored.

2.
Mar Drugs ; 19(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803653

ABSTRACT

Plastic pollution is a worldwide concern causing the death of animals (mainly aquatic fauna) and environmental deterioration. Plastic recycling is, in most cases, difficult or even impossible. For this reason, new research lines are emerging to identify highly biodegradable bioplastics or plastic formulations that are more environmentally friendly than current ones. In this context, microbes, capable of synthesizing bioplastics, were revealed to be good models to design strategies in which microorganisms can be used as cell factories. Recently, special interest has been paid to haloarchaea due to the capability of some species to produce significant concentrations of polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) when growing under a specific nutritional status. The growth of those microorganisms at the pilot or industrial scale offers several advantages compared to that of other microbes that are bioplastic producers. This review summarizes the state of the art of bioplastic production and the most recent findings regarding the production of bioplastics by halophilic microorganisms with special emphasis on haloarchaea. Some protocols to produce/analyze bioplastics are highlighted here to shed light on the potential use of haloarchaea at the industrial scale to produce valuable products, thus minimizing environmental pollution by plastics made from petroleum.


Subject(s)
Archaea/metabolism , Biodegradable Plastics/metabolism , Biopolymers/biosynthesis , Biotechnology , Green Chemistry Technology
3.
Amyloid ; 27(3): 163-167, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32106714

ABSTRACT

Management of patients with relapsed or refractory (R/R) AL amyloidosis is complex. Some initial reports have shown positive results with daratumumab in heavily pre-treated AL amyloidosis patients. In this retrospective multicentric study, 38 patients (mean age 64 ± 9 years) with R/R AL amyloidosis treated with daratumumab were included. Cardiac and renal involvement was present in 76 and 74% of patients, and 42% had ≥3 organs involved. Median number of previous lines of therapy was 2 (range 1-8). Overall hematological response was 72%, including 28% complete responses. The median time to first hematological response was 2 weeks. A high-quality response (≥very good partial response) was obtained in 65% of patients who had never achieved such depth of response previously. Hematological responses were more frequent among patients receiving daratumumab as second-line therapy compared to subsequent therapies (92 vs. 61%). Cardiac and renal organ response rates were 37 and 59%. At 12 months, overall and progression-free survival were 59% (95%CI: 0.36-0.77) and 52% (95%CI: 0.29-0.70), respectively. Daratumumab is a safe and effective drug in the treatment of R/R AL amyloidosis and should be considered early in the course of the disease.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Drug Resistance, Neoplasm/genetics , Immunoglobulin Light-chain Amyloidosis/drug therapy , Aged , Antibodies, Monoclonal/adverse effects , Female , Humans , Immunoglobulin Light-chain Amyloidosis/genetics , Immunoglobulin Light-chain Amyloidosis/pathology , Male , Middle Aged , Progression-Free Survival , Retrospective Studies , Treatment Outcome
4.
Cancer Lett ; 452: 158-167, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30922918

ABSTRACT

PTOV1 is a transcription and translation regulator and a promoter of cancer progression. Its overexpression in prostate cancer induces transcription of drug resistance and self-renewal genes, and docetaxel resistance. Here we studied PTOV1 ability to directly activate the transcription of ALDH1A1 and CCNG2 by binding to specific promoter sequences. Chromatin immunoprecipitation and electrophoretic mobility shift assays identified a DNA-binding motif inside the PTOV-A domain with similarities to known AT-hooks that specifically interacts with ALDH1A1 and CCNG2 promoters. Mutation of this AT-hook-like sequence significantly decreased the expression of ALDH1A1 and CCNG2 promoted by PTOV1. Immunohistochemistry revealed the association of PTOV1 with mitotic chromosomes in high grade prostate, colon, bladder, and breast carcinomas. Overexpression of PTOV1, ALDH1A1, and CCNG2 significantly correlated with poor prognosis in prostate carcinomas and with shorter relapse-free survival in colon carcinoma. The previously described interaction with translation complexes and its direct binding to ALDH1A1 and CCNG2 promoters found here reveal the PTOV1 capacity to modulate the expression of critical genes at multiple levels in aggressive cancers. Remarkably, the AT-hook motifs in PTOV1 open possibilities for selective targeting its nuclear and/or cytoplasmic activities.


Subject(s)
Aldehyde Dehydrogenase 1 Family/metabolism , Biomarkers, Tumor/genetics , Cyclin G2/metabolism , Gene Expression Regulation, Neoplastic/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/pathology , Retinal Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family/biosynthesis , Cell Line, Tumor , Cyclin G2/biosynthesis , DNA-Binding Proteins/genetics , Disease Progression , Humans , Male , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/genetics , Retinal Dehydrogenase/biosynthesis
5.
Oncotarget ; 8(35): 59165-59180, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28938627

ABSTRACT

Metastatic prostate cancer is presently incurable. The oncogenic protein PTOV1, first described in prostate cancer, was reported as overexpressed and significantly correlated with poor survival in numerous tumors. Here, we investigated the role of PTOV1 in prostate cancer survival to docetaxel and self-renewal ability. Transduction of PTOV1 in docetaxel-sensitive Du145 and PC3 cells significantly increased cell survival after docetaxel exposure and induced docetaxel-resistance genes expression (ABCB1, CCNG2 and TUBB2B). In addition, PTOV1 induced prostatospheres formation and self-renewal genes expression (ALDH1A1, LIN28A, MYC and NANOG). In contrast, Du145 and PC3 cells knockdown for PTOV1 significantly accumulated in the G2/M phase, presented a concomitant increased subG1 peak, and cell death by apoptosis. These effects were enhanced in docetaxel-resistant cells. Analyses of tumor datasets show that PTOV1 expression significantly correlated with prostate tumor grade, drug resistance (CCNG2) and self-renewal (ALDH1A1, MYC) markers. These genes are concurrently overexpressed in most metastatic lesions. Metastases also show PTOV1 genomic amplification in significant co-occurrence with docetaxel-resistance and self-renewal genes. Our findings identify PTOV1 as a promoter of docetaxel-resistance and self-renewal characteristics for castration resistant prostate cancer. The concomitant increased expression of PTOV1, ALDH1A1 and CCNG2 in primary tumors, may predict metastasis and bad prognosis.

6.
Oncotarget ; 8(7): 12451-12471, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28029646

ABSTRACT

Prostate-Tumor-Overexpressed-1 (PTOV1) is a conserved adaptor protein discovered as overexpressed in prostate cancer. Since its discovery, the number of binding partners and associated cellular functions has increased and helped to identify PTOV1 as regulator of gene expression at transcription and translation levels. Its overexpression is associated with increased tumor grade and proliferation in prostate cancer and other neoplasms, including breast, ovarian, nasopharyngeal, squamous laryngeal, hepatocellular and urothelial carcinomas. An important contribution to higher levels of PTOV1 in prostate tumors is given by the frequent rate of gene amplifications, also found in other tumor types. The recent resolution of the structure by NMR of the PTOV domain in PTOV2, also identified as Arc92/ACID1/MED25, has helped to shed light on the functions of PTOV1 as a transcription factor. In parallel, by studying its interaction with RACK1, we have discovered PTOV1 action in promoting mRNAs translation. Here, we will focus on the role of PTOV1 in cancer, re-examine its pro-oncogenic effects and re-evaluate the most relevant interactions and evidences of its cellular functions. The data are used to formulate a model for the mechanisms of action of PTOV1 in line with its recently described activities and cellular pathways modulated in cancer.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Biomarkers, Tumor/metabolism , Disease Progression , Humans , Male , Models, Genetic , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Signal Transduction/genetics
7.
Mol Cancer ; 13: 237, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25331979

ABSTRACT

BACKGROUND: Tumor cell subpopulations can either compete with each other for nutrients and physical space within the tumor niche, or co-operate for enhanced survival, or replicative or metastatic capacities. Recently, we have described co-operative interactions between two clonal subpopulations derived from the PC-3 prostate cancer cell line, in which the invasiveness of a cancer stem cell (CSC)-enriched subpopulation (PC-3M, or M) is enhanced by a non-CSC subpopulation (PC-3S, or S), resulting in their accelerated metastatic dissemination. METHODS: M and S secretomes were compared by SILAC (Stable Isotope Labeling by Aminoacids in Cell Culture). Invasive potential in vitro of M cells was analyzed by Transwell-Matrigel assays. M cells were co-injected with S cells in the dorsal prostate of immunodeficient mice and monitored by bioluminescence for tumor growth and metastatic dissemination. SPARC levels were determined by immunohistochemistry and real-time RT-PCR in tumors and by ELISA in plasma from patients with metastatic or non-metastatic prostate cancer. RESULTS: Comparative secretome analysis yielded 213 proteins differentially secreted between M and S cells. Of these, the protein most abundantly secreted in S relative to M cells was SPARC. Immunodepletion of SPARC inhibited the enhanced invasiveness of M induced by S conditioned medium. Knock down of SPARC in S cells abrogated the capacity of its conditioned medium to enhance the in vitro invasiveness of M cells and compromised their potential to boost the metastatic behavior of M cells in vivo. In most primary human prostate cancer samples, SPARC was expressed in the epithelial tumoral compartment of metastatic cases. CONCLUSIONS: The matricellular protein SPARC, secreted by a prostate cancer clonal tumor cell subpopulation displaying non-CSC properties, is a critical mediator of paracrine effects exerted on a distinct tumor cell subpopulation enriched in CSC. This paracrine interaction results in an enhanced metastatic behavior of the CSC-enriched tumor subpopulation. SPARC is expressed in the neoplastic cells of primary prostate cancer samples from metastatic cases, and could thus constitute a tumor progression biomarker and a therapeutic target in advanced prostate cancer.


Subject(s)
Lymphatic Metastasis/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Osteonectin/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Epithelium/drug effects , Epithelium/pathology , Extracellular Space/metabolism , Humans , Male , Neoplasm Invasiveness
8.
Mol Cancer ; 13: 74, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24684754

ABSTRACT

BACKGROUND: PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. METHODS: Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. RESULTS: Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this correlation was significant in metastatic lesions. CONCLUSIONS: High levels of the adaptor protein PTOV1 counteract the transcriptional activity of Notch. Our evidences link the pro-oncogenic and pro-metastatic effects of PTOV1 in prostate cancer to its inhibitory activity on Notch signaling and are supportive of a tumor suppressor role of Notch in prostate cancer progression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Biomarkers, Tumor/genetics , Cell Cycle Proteins/biosynthesis , Homeodomain Proteins/biosynthesis , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Drosophila melanogaster , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Homeodomain Proteins/genetics , Humans , Male , Mice , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Prostatic Neoplasms/pathology , Receptors, Notch/biosynthesis , Signal Transduction/genetics , Transcription Factor HES-1 , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...