Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Br J Radiol ; 93(1107): 20190469, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31860338

ABSTRACT

Proton arc therapy (PAT) has been proposed as a possible evolution for proton therapy. This commentary uses dosimetric and cancer risk evaluations from earlier studies to compare PAT with intensity modulated proton therapy. It is concluded that, although PAT may not produce better physical dose distributions than intensity modulated proton therapy, the radiobiological considerations associated with particular PAT techniques could offer the possibility of an increased therapeutic index.


Subject(s)
Proton Therapy/methods , Radiotherapy, Intensity-Modulated/methods , Therapeutic Index , Humans , Lung Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiation Dose Hypofractionation , Radiobiology , Radiometry/methods , Radiotherapy Dosage , Relative Biological Effectiveness , Uncertainty
2.
Med Phys ; 46(12): 5816-5823, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31603992

ABSTRACT

PURPOSE: To introduce a new algorithm-MicroCalc-for dose calculation by modeling microdosimetric energy depositions and the spectral fluence at each point of a particle beam. Proton beams are considered as a particular case of the general methodology. By comparing the results obtained against Monte Carlo computations, we aim to validate the microdosimetric formalism presented here and in previous works. MATERIALS AND METHODS: In previous works, we developed a function on the energy for the average energy imparted to a microdosimetric site per event and a model to compute the energetic spectrum at each point of the patient image. The number of events in a voxel is estimated assuming a model in which the voxel is completely filled by microdosimetric sites. Then, dose at every voxel is computed by integrating the average energy imparted per event multiplied by the number of events per energy beam of the spectral distribution within the voxel. Our method is compared with the proton convolution superposition (PCS) algorithm implemented in Eclipse™ and the fast Monte Carlo code MCsquare, which is here considered the benchmark, for in-water calculations, using in both cases clinically validated beam data. Two clinical cases are considered: a brain and a prostate case. RESULTS: For a SOBP beam in water, the mean difference at the central axis found for MicroCalc is of 0.86% against 1.03% for PCS. Three-dimensional gamma analyses in the PTVs compared with MCsquare for criterion (3%, 3 mm) provide gamma index of 95.07% with MicroCalc vs 94.50% with PCS for the brain case and 99.90% vs 100.00%, respectively, for the prostate case. For selected organs at risk in each case (brainstem and rectum), mean and maximum difference with respect to MCsquare dose are analyzed. In the brainstem, mean differences are 0.25 Gy (MicroCalc) vs 0.56 Gy (PCS), whereas for the rectum, these values are 0.05 Gy (MicroCalc) vs 0.07 Gy (PCS). CONCLUSIONS: The accuracy of MicroCalc seems to be, at least, not inferior to PCS, showing similar or better agreement with MCsquare in the considered cases. Additionally, the algorithm enables simultaneous computation of other quantities of interest. These results seem to validate the microdosimetric methodology in which the algorithm is based on.


Subject(s)
Algorithms , Proton Therapy , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Monte Carlo Method , Radiometry , Radiotherapy Dosage
3.
Int J Mol Sci ; 20(1)2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30621290

ABSTRACT

Updated measurements of charged particle fluxes during the transit from Earth to Mars as well as on site measurements by Curiosity of Martian surface radiation fluxes identified potential health hazards associated with radiation exposure for human space missions. Designing mitigation strategies of radiation risks to astronauts is critical. We investigated radiation-induced endothelial cell damage and its mitigation by LGM2605, a radioprotector with antioxidant and free radical scavenging properties. We used an in vitro model of lung vascular networks (flow-adapted endothelial cells; FAECs), exposed to gamma rays, low/higher linear energy transfer (LET) protons (3⁻4 or 8⁻10 keV/µm, respectively), and mixed field radiation sources (gamma and protons), given at mission-relevant doses (0.25 gray (Gy)⁻1 Gy). We evaluated endothelial inflammatory phenotype, NLRP3 inflammasome activation, and oxidative cell injury. LGM2605 (100 µM) was added 30 min post radiation exposure and gene expression changes evaluated 24 h later. Radiation induced a robust increase in mRNA levels of antioxidant enzymes post 0.25 Gy and 0.5 Gy gamma radiation, which was significantly decreased by LGM2605. Intercellular cell adhesion molecule-1 (ICAM-1) and NOD-like receptor protein 3 (NLRP3) induction by individual or mixed-field exposures were also significantly blunted by LGM2605. We conclude that LGM2605 is a likely candidate to reduce tissue damage from space-relevant radiation exposure.


Subject(s)
Butylene Glycols/pharmacology , Gamma Rays , Glucosides/pharmacology , Inflammasomes/metabolism , Lung/blood supply , Lung/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Radiation-Protective Agents/pharmacology , Animals , Antioxidants/pharmacology , Humans , Inflammation/pathology , Intercellular Adhesion Molecule-1/metabolism , Linear Energy Transfer , Lung/drug effects , Lung/radiation effects , Phenotype , Protons
4.
Med Phys ; 46(3): e53-e78, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30661238

ABSTRACT

The biological effectiveness of proton beams relative to photon beams in radiation therapy has been taken to be 1.1 throughout the history of proton therapy. While potentially appropriate as an average value, actual relative biological effectiveness (RBE) values may differ. This Task Group report outlines the basic concepts of RBE as well as the biophysical interpretation and mathematical concepts. The current knowledge on RBE variations is reviewed and discussed in the context of the current clinical use of RBE and the clinical relevance of RBE variations (with respect to physical as well as biological parameters). The following task group aims were designed to guide the current clinical practice: Assess whether the current clinical practice of using a constant RBE for protons should be revised or maintained. Identifying sites and treatment strategies where variable RBE might be utilized for a clinical benefit. Assess the potential clinical consequences of delivering biologically weighted proton doses based on variable RBE and/or LET models implemented in treatment planning systems. Recommend experiments needed to improve our current understanding of the relationships among in vitro, in vivo, and clinical RBE, and the research required to develop models. Develop recommendations to minimize the effects of uncertainties associated with proton RBE for well-defined tumor types and critical structures.


Subject(s)
Neoplasms/radiotherapy , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Relative Biological Effectiveness , Humans , Practice Guidelines as Topic/standards , Radiotherapy Dosage , Research Report
5.
Sci Rep ; 5: 13961, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26354413

ABSTRACT

Glioblastoma multiforme (GBM) is among the most lethal of human malignancies. Most GBM tumors are refractory to cytotoxic therapies. Glioma stem cells (GSCs) significantly contribute to GBM progression and post-treatment tumor relapse, therefore serving as a key therapeutic target; however, GSCs are resistant to conventional radiation therapy. Proton therapy is one of the newer cancer treatment modalities and its effects on GSCs function remain unclear. Here, by utilizing patient-derived GSCs, we show that proton radiation generates greater cytotoxicity in GSCs than x-ray photon radiation. Compared with photon radiation, proton beam irradiation induces more single and double strand DNA breaks, less H2AX phosphorylation, increased Chk2 phosphorylation, and reduced cell cycle recovery from G2 arrest, leading to caspase-3 activation, PARP cleavage, and cell apoptosis. Furthermore, proton radiation generates a large quantity of reactive oxygen species (ROS), which is required for DNA damage, cell cycle redistribution, apoptosis, and cytotoxicity. Together, these findings indicate that proton radiation has a higher efficacy in treating GSCs than photon radiation. Our data reveal a ROS-dependent mechanism by which proton radiation induces DNA damage and cell apoptosis in GSCs. Thus, proton therapy may be more efficient than conventional x-ray photon therapy for eliminating GSCs in GBM patients.


Subject(s)
Apoptosis/genetics , Apoptosis/radiation effects , DNA Damage/radiation effects , Glioma/genetics , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects , Protons/adverse effects , Radiation, Ionizing , Reactive Oxygen Species/metabolism , Cell Cycle/genetics , Cell Cycle/radiation effects , Cell Line, Tumor , Checkpoint Kinase 1 , Checkpoint Kinase 2/metabolism , DNA Repair/radiation effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , Phosphorylation , Photons/adverse effects , Protein Kinases/metabolism
6.
PLoS One ; 10(3): e0120126, 2015.
Article in English | MEDLINE | ID: mdl-25793272

ABSTRACT

A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body's defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/prevention & control , Granulocyte Colony-Stimulating Factor/pharmacology , Solar Activity , Space Flight , Animals , Enrofloxacin , Female , Fluoroquinolones/pharmacology , Mice
7.
Radiat Res ; 183(2): 174-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25587741

ABSTRACT

The purpose of this study was to determine the relative biological effectiveness (RBE) along the axis of two range-modulated proton beams (160 and 230 MeV). Both the depth and the dose dependence of RBE were investigated. Chinese hamster V79-WNRE cells, suspended in medium containing gelatin and cooled to 2 °C, were used to obtain complete survival curves at multiple positions throughout the entrance and 10 cm spread-out Bragg peak (SOBP). Simultaneous measurements of the survival response to (60)Co gamma rays served as the reference data for the proton RBE determinations. For both beams the RBE increased significantly with depth in the 10 cm SOBP, particularly in the distal half of the SOBP, then rose even more sharply at the distal edge, the most distal position measured. At a 4 Gy dose of gamma radiation (S = 0.34) the average RBE values for the entrance, proximal half, distal half and distal edge were 1.07 ± 0.01, 1.10 ± 0.01, 1.17 ± 0.01 and 1.21 ± 0.01, respectively, and essentially the same for both beams. At a 2 Gy dose of gamma radiation (S = 0.71) the average RBE values rose to 1.13 ± 0.03, 1.15 ± 0.02, 1.26 ± 0.02 and 1.30 ± 0.02, respectively, for the same four regions of the SOBP. The difference between the 4 Gy and 2 Gy RBE values reflects the dose dependence of RBE as measured in these V79-WNRE cells, which have a low α/ß value, as do other widely used cell lines that also show dose-dependent RBE values. Late-responding tissues are also characterized by low α/ß values, so it is possible that these cell lines may be predictive for the response of such tissues (e.g., spinal cord, optic nerve, kidney, liver, lung). However, in the very small number of studies of late-responding tissues performed to date there appears to be no evidence of an increased RBE for protons at low doses. Similarly, RBE measurements using early responding in vivo systems (mostly mouse jejunum, an early-responding tissue which has a large α/ß âˆ¼ 10 Gy) have generally shown little or no detectable dose dependence. It is useful to compare the RBE values reported here to the commonly used generic clinical RBE of 1.1, which assumes no dependence on depth or on dose. Our proximal RBEs obviously avoid the depth-related increase in RBE and for doses of 4 Gy or more, the low-dose increase in RBE is also minimized, as shown in this article. Thus the proximal RBE at a 4 Gy dose of 1.10 ± 0.01, quoted above, represents an interesting point of congruence with the clinical RBE for conditions where it could reasonably be expected in the measurements reported here. The depth dependence of RBE reported here is consistent with the majority of measurements, both in vitro and in vivo, by other investigators. The dose dependence of RBE, on the other hand, is tissue specific but has not yet been demonstrated for protons by RBE values in late-responding normal tissue systems. This indicates a need for additional RBE determination as function of dose, especially in late-responding tissues.


Subject(s)
Apoptosis/radiation effects , Cell Survival/radiation effects , Lung/cytology , Lung/physiology , Radiotherapy, High-Energy/methods , Animals , Cell Line , Cricetinae , Cricetulus , Dose-Response Relationship, Radiation , Lung/radiation effects , Proton Therapy , Radiotherapy Dosage
8.
Gravit Space Res ; 2(1): 42-53, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25360441

ABSTRACT

Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.

9.
Phys Med Biol ; 57(20): 6671-80, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-23022765

ABSTRACT

The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in- and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields.


Subject(s)
Proton Therapy , Scattering, Radiation , Cell Communication/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , Humans , Relative Biological Effectiveness
10.
Appl Radiat Isot ; 67(3): 371-7, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18693025

ABSTRACT

The history of developments in atomic physics and its applications follows the decisive input provided by Maxwell and subsequent discoveries by his successors at the Cavendish Laboratory. In medicine the potential applications of particle physics (with the notable exception of the electron) were unfortunately delayed by the disappointing experiences with neutron therapy, which produced long-term scepticism. Neutrons are not appropriate for cancer therapy because not only their physical dose distributions offer no advantages over X-rays, but also their biological dose distributions are worse. The much improved dose distributions achieved with charged particles offer real prospects for better treatment outcomes because of the large reduction in the volume of unnecessarily irradiated tissue in many situations. Charged particle therapy is relatively new and can be applied with increasing confidence due to advances in radiology and computing, but at present there are insufficient numbers of treatment facilities to produce statistically powerful studies to compare treatment outcomes with those of X-rays. Considerable progress has been achieved in Japan and Germany with pilot studies of carbon ions but their efficacy compared with protons needs to be tested: in theory carbon should be better for intrinsically radio-resistant and for the most hypoxic tumours. The optimisation of proton and ion beam therapy in clinical practice remains to be achieved, but there are good scientific reasons why these modalities will be preferred by patients and their physicians in the future. Regrettably, despite hosting many of the momentous discoveries that enabled the development of charged particle therapy, the UK is slow to adopt and implement this very important form of cancer treatment.


Subject(s)
Carbon Radioisotopes/therapeutic use , Neoplasms/radiotherapy , Humans , Ions/therapeutic use , Neutrons/therapeutic use , Radiation Dosage
11.
Int J Radiat Biol ; 83(1): 27-39, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17357437

ABSTRACT

PURPOSE: The formulation of relative biological effectiveness (RBE) for high linear energy transfer (high-LET) radiation treatments is revisited. The effects of changed production of sub-lethal damage with varying LET is now considered via the RBEmin concept, where RBEmin represents the lower limit to which RBE tends at high doses per fraction. MATERIALS AND METHODS: An existing linear-quadratic formulation for calculating RBE variations with fractional dose for high-LET radiations is modified to incorporate the twin concepts of RBEmax (which represents the value of RBE at an effective dose-per-fraction of 0 Gy) and RBEmin. RESULTS: Fits of the model to data showed RBEmin values in the range of 0.1- 2.27. In all cases the raw data was a better statistical fit to the model which included RBEmin, although this was only very highly significant in one case. In the case of the mouse oesophagus it is shown that, if change in the beta-radiosensitivity coefficient with LET is considered as trivial, an underestimation > 5% in RBE can be expected at X-ray doses of 2 Gy/fraction if RBEmin is not considered. To ensure that the results were not biased by the statistical method used to obtain the parameter values relevant to this analysis (i.e., using fraction-size effect or Fe-plots), an alternative method was used which provided very similar correlation with the data. CONCLUSIONS: If the production of sublethal damage is considered independent of LET, there will be a risk that non-corrected evaluation of RBE will lead to an over- or under-estimate of RBE at low doses per fractions (the clinically relevant region).


Subject(s)
Dose Fractionation, Radiation , Esophagus/radiation effects , Linear Energy Transfer , Lung/radiation effects , Proton Therapy , Animals , Esophagus/pathology , Linear Models , Lung/pathology , Mice , Models, Biological , Radiation Tolerance , Relative Biological Effectiveness , X-Rays
12.
Cancer Biother Radiopharm ; 20(1): 47-51, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15778580

ABSTRACT

The linear-quadratic (LQ) model of radiobiological effect is well established in conventional, i.e., external beam, radiotherapy. Because the model is derived from sound biophysical principles, it is also emerging as the standard formalism for assessing biological responses for the whole range of radiotherapy treatments. A central feature of LQ methodology is the quantity known as the biologically effective dose (BED), which may be used to quantify the radiobiological impact of a treatment on both tumors and normal tissues. The BEDs commonly associated with conventional therapy may thus be compared to those expected from novel radiotherapy treatments, such as targeted radionuclide therapy. This approach also provides a mechanism for designing targeted treatments which are therapeutically equivalent to external beam treatments. In this paper the LQ methodology is outlined and worked examples are provided which demonstrate the tentative link between targeted radiotherapy doses and those used in conventional radiotherapy. The incorporation of an allowance for relative biological effectiveness (RBE) effects is also discussed. The complexity of the subject and the potentially large number of variables does place a restriction on overall predictive accuracy and the necessary caveats are outlined.


Subject(s)
Radioisotopes/therapeutic use , Radiotherapy/methods , DNA/radiation effects , Humans , Linear Energy Transfer , Mathematics , Models, Statistical , Models, Theoretical , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Relative Biological Effectiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...