Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1840(6): 1798-807, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24444799

ABSTRACT

BACKGROUND: Fructose-1,6-bisphosphatase, a major enzyme of gluconeogenesis, is inhibited by AMP, Fru-2,6-P2 and by high concentrations of its substrate Fru-1,6-P2. The mechanism that produces substrate inhibition continues to be obscure. METHODS: Four types of experiments were used to shed light on this: (1) kinetic measurements over a very wide range of substrate concentrations, subjected to detailed statistical analysis; (2) fluorescence studies of mutants in which phenylalanine residues were replaced by tryptophan; (3) effect of Fru-2,6-P2 and Fru-1,6-P2 on the exchange of subunits between wild-type and Glu-tagged oligomers; and (4) kinetic studies of hybrid forms of the enzyme containing subunits mutated at the active site residue tyrosine-244. RESULTS: The kinetic experiments with the wild-type enzyme indicate that the binding of Fru-1,6-P2 induces the appearance of catalytic sites with lower affinity for substrate and lower catalytic activity. Binding of substrate to the high-affinity sites, but not to the low-affinity sites, enhances the fluorescence emission of the Phe219Trp mutant; the inhibitor, Fru-2,6-P2, competes with the substrate for the high-affinity sites. Binding of substrate to the low-affinity sites acts as a "stapler" that prevents dissociation of the tetramer and hence exchange of subunits, and results in substrate inhibition. CONCLUSIONS: Binding of the first substrate molecule, in one dimer of the enzyme, produces a conformational change at the other dimer, reducing the substrate affinity and catalytic activity of its subunits. GENERAL SIGNIFICANCE: Mimics of the substrate inhibition of fructose-1,6-bisphosphatase may provide a future option for combatting both postprandial and fasting hyperglycemia.


Subject(s)
Biocatalysis , Fructose-Bisphosphatase/chemistry , Kidney/enzymology , Animals , Base Sequence , Binding Sites , Fructose-Bisphosphatase/antagonists & inhibitors , Fructose-Bisphosphatase/metabolism , Fructosediphosphates/chemistry , Molecular Sequence Data , Protein Subunits , Substrate Specificity , Swine
2.
Methods Mol Biol ; 1090: 261-80, 2014.
Article in English | MEDLINE | ID: mdl-24222421

ABSTRACT

This chapter describes a practical procedure to dissect metabolic systems, simplify them, and use or derive enzyme rate equations in order to build a mathematical model of a metabolic system and run simulations. We first deal with a simple example, modeling a single enzyme that follows Michaelis-Menten kinetics and operates in the middle of an unbranched metabolic pathway. Next we describe the rules that can be followed to isolate sub-systems from their environment to simulate their behavior. Finally we use examples to show how to derive suitable rate equations, simpler than those needed for mechanistic studies, though adequate to describe the behavior over the physiological range of conditions.Many of the general characteristics of kinetic models will be obvious to readers familiar with the theory of metabolic control analysis (Cornish-Bowden, Fundamentals of Enzyme Kinetics, Wiley-Blackwell, Weinheim, 327-380, 2012), but here we shall not assume such knowledge, as the chapter is directed toward practical application rather than theory.


Subject(s)
Computer Simulation , Models, Biological , Algorithms , Allosteric Regulation , Biosynthetic Pathways , Enzyme Assays , Kinetics , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Plant Proteins/chemistry , Software , Stochastic Processes , Threonine Dehydratase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...