Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 101: 163-70, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24299761

ABSTRACT

In the field of composite materials, natural fibres appear to be a viable replacement for glass fibres. However, in humid conditions, strong hydrophilic behaviour of such materials can lead to their structural modification. Then, understanding moisture sorption mechanisms in these materials is an important issue for their efficient use. In this work, the water sorption on three natural fibres (flax, hemp and sisal) was studied using Fourier transformed infrared spectroscopy. The spectral information allowed both qualitative and quantitative analyses of the moisture absorption mechanisms. The main chemical functions involved in the water sorption phenomenon were identified. The absolute water content of the fibres was also determined by using a partial least square regression (PLS-R) approach. Moreover, typical sorption isotherm curves described by Park model were fitted as well as water diffusion kinetics. These last applications confirmed the validity of the FTIR spectra based predictive models.


Subject(s)
Biological Products/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Absorption , Diffusion , Kinetics , Least-Squares Analysis , Plants/chemistry
2.
Front Chem ; 1: 43, 2013.
Article in English | MEDLINE | ID: mdl-24790971

ABSTRACT

Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...