Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Sci Rep ; 14(1): 13605, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871772

ABSTRACT

The aim of this study was to characterize the systemic cytokine signature of critically ill COVID-19 patients in a high mortality setting aiming to identify biomarkers of severity, and to explore their associations with viral loads and clinical characteristics. We studied two COVID-19 critically ill patient cohorts from a referral centre located in Central Europe. The cohorts were recruited during the pre-alpha/alpha (November 2020 to April 2021) and delta (end of 2021) period respectively. We determined both the serum and bronchoalveolar SARS-CoV-2 viral load and identified the variant of concern (VoC) involved. Using a cytokine multiplex assay, we quantified systemic cytokine concentrations and analyzed their relationship with clinical findings, routine laboratory workup and pulmonary function data obtained during the ICU stay. Patients who did not survive had a significantly higher systemic and pulmonary viral load. Patients infected with the pre-alpha VoC showed a significantly lower viral load in comparison to those infected with the alpha- and delta-variants. Levels of systemic CTACK, M-CSF and IL-18 were significantly higher in non-survivors in comparison to survivors. CTACK correlated directly with APACHE II scores. We observed differences in lung compliance and the association between cytokine levels and pulmonary function, dependent on the VoC identified. An intra-cytokine analysis revealed a loss of correlation in the non-survival group in comparison to survivors in both cohorts. Critically ill COVID-19 patients exhibited a distinct systemic cytokine profile based on their survival outcomes. CTACK, M-CSF and IL-18 were identified as mortality-associated analytes independently of the VoC involved. The Intra-cytokine correlation analysis suggested the potential role of a dysregulated systemic network of inflammatory mediators in severe COVID-19 mortality.


Subject(s)
COVID-19 , Critical Illness , Cytokines , Intensive Care Units , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/blood , Cytokines/blood , Male , Middle Aged , Female , Aged , Viral Load , Biomarkers/blood , Cohort Studies , Pandemics
2.
HLA ; 103(6): e15541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923358

ABSTRACT

Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Dendritic Cells , Epitopes, T-Lymphocyte , Immunodominant Epitopes , Humans , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Immunodominant Epitopes/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A11 Antigen/immunology , HLA-A11 Antigen/genetics , Fibroblasts/immunology , Fibroblasts/virology , Antigen-Presenting Cells/immunology
3.
Blood Adv ; 8(13): 3416-3426, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38640254

ABSTRACT

ABSTRACT: Adoptive cellular therapies have shown enormous potential but are complicated by personalization. Because of HLA mismatch, rejection of transferred T cells frequently occurs, compromising the T-cell graft's functionality. This obstacle has led to the development of HLA knock-out (KO) T cells as universal donor cells. Whether such editing directly affects T-cell functionality remains poorly understood. In addition, HLA KO T cells are susceptible to missing self-recognition through natural killer (NK) cells and lack of canonical HLA class I expression may represent a safety hazard. Engineering of noncanonical HLA molecules could counteract NK-cell recognition, but further complicates the generation of cell products. Here, we show that HLA KO does not alter T-cell functionality in vitro and in vivo. Although HLA KO abrogates allogeneic T-cell responses, it elicits NK-cell recognition. To circumvent this problem, we demonstrate that selective editing of individual HLA class I molecules in primary human T cells is possible. Such HLA reduction not only inhibits T-cell alloreactivity and NK-cell recognition simultaneously, but also preserves the T-cell graft's canonical HLA class I expression. In the presence of allogeneic T cells and NK cells, T cells with remaining expression of a single, matched HLA class I allele show improved functionality in vivo in comparison with conventional allogeneic T cells. Since reduction to only a few, most frequent HLA haplotypes would already be compatible with large shares of patient populations, this approach significantly extends the toolbox to generate broadly applicable cellular products.


Subject(s)
Killer Cells, Natural , T-Lymphocytes , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , HLA Antigens/immunology , HLA Antigens/genetics , Gene Editing , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Gene Knockout Techniques
4.
iScience ; 27(3): 109173, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38496294

ABSTRACT

Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.

5.
Nat Commun ; 15(1): 1745, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409141

ABSTRACT

Human cytomegalovirus (HCMV) is a widespread pathogen that in immunocompromised hosts can cause life-threatening disease. Studying HCMV-exposed monocyte-derived dendritic cells by single-cell RNA sequencing, we observe that most cells are entered by the virus, whereas less than 30% of them initiate viral gene expression. Increased viral gene expression is associated with activation of the stimulator of interferon genes (STING) that usually induces anti-viral interferon responses, and with the induction of several pro- (RHOB, HSP1A1, DNAJB1) and anti-viral (RNF213, TNFSF10, IFI16) genes. Upon progression of infection, interferon-beta but not interferon-lambda transcription is inhibited. Similarly, interferon-stimulated gene expression is initially induced and then shut off, thus further promoting productive infection. Monocyte-derived dendritic cells are composed of 3 subsets, with one being especially susceptible to HCMV. In conclusion, HCMV permissiveness of monocyte-derived dendritic cells depends on complex interactions between virus sensing, regulation of the interferon response, and viral gene expression.


Subject(s)
Cytomegalovirus , Interferons , Humans , Cytomegalovirus/physiology , Signal Transduction/genetics , Antiviral Agents/metabolism , Dendritic Cells/metabolism , HSP40 Heat-Shock Proteins/metabolism , Adenosine Triphosphatases/metabolism , Ubiquitin-Protein Ligases/metabolism
6.
PLoS Pathog ; 20(2): e1012025, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38346075

ABSTRACT

Cytomegalovirus (CMV) induces a unique T cell response, where antigen-specific populations do not contract, but rather inflate during viral latency. It has been proposed that subclinical episodes of virus reactivation feed the inflation of CMV-specific memory cells by intermittently engaging T cell receptors (TCRs), but evidence of TCR engagement has remained lacking. Nuclear factor of activated T cells (NFAT) is a family of transcription factors, where NFATc1 and NFATc2 signal downstream of TCR in mature T lymphocytes. We show selective impacts of NFATc1 and/or NFATc2 genetic ablations on the long-term inflation of MCMV-specific CD8+ T cell responses despite largely maintained responses to acute infection. NFATc1 ablation elicited robust phenotypes in isolation, but the strongest effects were observed when both NFAT genes were missing. CMV control was impaired only when both NFATs were deleted in CD8+ T cells used in adoptive immunotherapy of immunodeficient mice. Transcriptome analyses revealed that T cell intrinsic NFAT is not necessary for CD8+ T cell priming, but rather for their maturation towards effector-memory and in particular the effector cells, which dominate the pool of inflationary cells.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Animals , Mice , Muromegalovirus/physiology , CD8-Positive T-Lymphocytes , Cytomegalovirus , Receptors, Antigen, T-Cell , Immunologic Memory
7.
Cell ; 187(3): 596-608.e17, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194966

ABSTRACT

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Caspases/metabolism , COVID-19/immunology , COVID-19/virology , Lung/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Internalization , Spike Glycoprotein, Coronavirus/genetics
8.
Cell Rep ; 43(2): 113698, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38265934

ABSTRACT

Congenital cytomegalovirus (cCMV) is the most common intrauterine infection, leading to infant neurodevelopmental disabilities. An improved knowledge of correlates of protection against cCMV is needed to guide prevention strategies. Here, we employ an ex vivo model of human CMV (HCMV) infection in decidual tissues of women with and without preconception immunity against CMV, recapitulating nonprimary vs. primary infection at the authentic maternofetal transmission site. We show that decidual tissues of women with preconception immunity against CMV exhibit intrinsic resistance to HCMV, mounting a rapid activation of tissue-resident memory CD8+ and CD4+ T cells upon HCMV reinfection. We further reveal the role of HCMV-specific decidual-tissue-resident CD8+ T cells in local protection against nonprimary HCMV infection. The findings could inform the development of a vaccine against cCMV and provide insights for further studies of the integrity of immune defense against HCMV and other pathogens at the human maternal-fetal interface.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Infant , Humans , Female , CD8-Positive T-Lymphocytes , Memory T Cells , Fetus
9.
Viruses ; 15(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38005829

ABSTRACT

As of now, the COVID-19 pandemic has spread to over 770 million confirmed cases and caused approximately 7 million deaths. While several vaccines and monoclonal antibodies (mAb) have been developed and deployed, natural selection against immune recognition of viral antigens by antibodies has fueled the evolution of new emerging variants and limited the immune protection by vaccines and mAb. To optimize the efficiency of mAb, it is imperative to understand how they neutralize the variants of concern (VoCs) and to investigate the mutations responsible for immune escape. In this study, we show the in vitro neutralizing effects of a previously described monoclonal antibody (STE90-C11) against the SARS-CoV-2 Delta variant (B.1.617.2) and its in vivo effects in therapeutic and prophylactic settings. We also show that the Omicron variant avoids recognition by this mAb. To define which mutations are responsible for the escape in the Omicron variant, we used a library of pseudovirus mutants carrying each of the mutations present in the Omicron VoC individually. We show that either 501Y or 417K point mutations were sufficient for the escape of Omicron recognition by STE90-C11. To test how escape mutations act against a combination of antibodies, we tested the same library against bispecific antibodies, recognizing two discrete regions of the spike antigen. While Omicron escaped the control by the bispecific antibodies, the same antibodies controlled all mutants with individual mutations.


Subject(s)
Antibodies, Bispecific , COVID-19 , Hepatitis D , Vaccines , Humans , Antibodies, Neutralizing , SARS-CoV-2/genetics , Pandemics , Antibodies, Monoclonal , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
10.
Front Immunol ; 14: 1288794, 2023.
Article in English | MEDLINE | ID: mdl-38022629

ABSTRACT

Introduction: The evolution of novel SARS-CoV-2 variants significantly affects vaccine effectiveness. While these effects can only be studied retrospectively, neutralizing antibody titers are most used as correlates of protection. However, studies assessing neutralizing antibody titers often show heterogeneous data. Methods: To address this, we investigated assay variance and identified virus infection time and dose as factors affecting assay robustness. We next measured neutralization against Omicron sub-variants in cohorts with hybrid or vaccine induced immunity, identifying a gradient of immune escape potential. To evaluate the effect of individual mutations on this immune escape potential of Omicron variants, we systematically assessed the effect of each individual mutation specific to Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5. Results: We cloned a library of pseudo-viruses expressing spikes with single point mutations, and subjected it to pooled sera from vaccinated hosts, thereby identifying multiple mutations that independently affect neutralization potency. Discussion: These data might help to predict antigenic features of novel viral variants carrying these mutations and support the development of broad monoclonal antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Retrospective Studies , SARS-CoV-2/genetics , COVID-19/prevention & control , Mutation , Vaccination , Antibodies, Neutralizing
11.
Sci Adv ; 9(25): eadf4975, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37343108

ABSTRACT

Epithelial immune responses govern tissue homeostasis and offer drug targets against maladaptation. Here, we report a framework to generate drug discovery-ready reporters of cellular responses to viral infection. We reverse-engineered epithelial cell responses to SARS-CoV-2, the viral agent fueling the ongoing COVID-19 pandemic, and designed synthetic transcriptional reporters whose molecular logic comprises interferon-α/ß/γ and NF-κB pathways. Such regulatory potential reflected single-cell data from experimental models to severe COVID-19 patient epithelial cells infected by SARS-CoV-2. SARS-CoV-2, type I interferons, and RIG-I drive reporter activation. Live-cell image-based phenotypic drug screens identified JAK inhibitors and DNA damage inducers as antagonistic modulators of epithelial cell response to interferons, RIG-I stimulation, and SARS-CoV-2. Synergistic or antagonistic modulation of the reporter by drugs underscored their mechanism of action and convergence on endogenous transcriptional programs. Our study describes a tool for dissecting antiviral responses to infection and sterile cues and rapidly discovering rational drug combinations for emerging viruses of concern.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Pandemics , Epithelial Cells
12.
Nat Commun ; 14(1): 3087, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248241

ABSTRACT

To date, no herpesvirus has been shown to latently persist in fibroblastic cells. Here, we show that murine cytomegalovirus, a ß-herpesvirus, persists for the long term and across organs in PDGFRα-positive fibroblastic cells, with similar or higher genome loads than in the previously known sites of murine cytomegalovirus latency. Whereas murine cytomegalovirus gene transcription in PDGFRα-positive fibroblastic cells is almost completely silenced at 5 months post-infection, these cells give rise to reactivated virus ex vivo, arguing that they support latent murine cytomegalovirus infection. Notably, PDGFRα-positive fibroblastic cells also support productive virus replication during primary murine cytomegalovirus infection. Mechanistically, Stat1-deficiency promotes lytic infection but abolishes latent persistence of murine cytomegalovirus in PDGFRα-positive fibroblastic cells in vivo. In sum, fibroblastic cells have a dual role as a site of lytic murine cytomegalovirus replication and a reservoir of latent murine cytomegalovirus in vivo and STAT1 is required for murine cytomegalovirus latent persistence in vivo.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Animals , Mice , Cytomegalovirus/genetics , Virus Latency/genetics , Receptor, Platelet-Derived Growth Factor alpha , Virus Replication , Fibroblasts , STAT1 Transcription Factor/genetics
13.
Viruses ; 15(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36851486

ABSTRACT

The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells, and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts as to whether TMPRSS2 inhibitors would be suitable for the treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to the spread of SARS-CoV-2 in the infected host is largely unclear. In this study, we show that the loss of TMPRSS2 strongly reduced the replication of the Beta variant in the nose, trachea and lung of C57BL/6 mice, and protected the animals from weight loss and disease. The infection of mice with the Omicron variant did not cause disease, as expected, but again, TMPRSS2 was essential for efficient viral spread in the upper and lower respiratory tract. These results identify the key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection, and highlight TMPRSS2 as an attractive target for antiviral intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice, Inbred C57BL , Pandemics , Serine Endopeptidases/genetics
14.
Proc Natl Acad Sci U S A ; 120(10): e2200626120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36853939

ABSTRACT

Engagement of the inhibitory T cell receptor programmed cell death protein 1 (PD-1) associates with dysfunctional states of pathogen- or tumor-specific T cells. Accordingly, systemic antibody-mediated blockade of PD-1 has become a central target for immunotherapies but is also associated with severe toxicities due to loss of peripheral tolerance. Therefore, selective ablation of PD-1 expression on adoptively transferred T cells through direct genetic knockout (KO) is currently being explored as an alternative therapeutic approach. However, since PD-1 might also be required for the regulation of physiological T cell function and differentiation, the suitability of PD-1 as an engineering target is controversial. In this study, we systematically investigated the maintenance of T cell functionality after CRISPR/Cas9-mediated PD-1 KO in vivo during and after acute and chronic antigen encounter. Under all tested conditions, PD-1 ablation preserved the persistence, differentiation, and memory formation of adoptively transferred receptor transgenic T cells. Functional PD-1 KO T cells expressing chimeric antigen receptors (CARs) targeting CD19 could be robustly detected for over 390 d in a syngeneic immunocompetent mouse model, in which constant antigen exposure was provided by continuous B cell renewal, representing the longest in vivo follow-up of CAR-T cells described to date. PD-1 KO CAR-T cells showed no evidence for malignant transformation during the entire observation period. Our data demonstrate that genetic ablation of PD-1 does not impair functionality and longevity of adoptively transferred T cells per se and therefore may be pursued more generally in engineered T cell-based immunotherapy to overcome a central immunosuppressive axis.


Subject(s)
Programmed Cell Death 1 Receptor , T-Lymphocytes , Animals , Mice , Programmed Cell Death 1 Receptor/genetics , Adaptor Proteins, Signal Transducing , Animals, Genetically Modified , Antibodies, Blocking
15.
Angew Chem Int Ed Engl ; 62(6): e202214595, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36422061

ABSTRACT

A new family of highly unusual sesquarterpenoids (persicamidines A-E) exhibiting significant antiviral activity was isolated from a newly discovered actinobacterial strain, Kibdelosporangium persicum sp. nov., collected from a hot desert in Iran. Extensive NMR analysis unraveled a hexacyclic terpenoid molecule with a modified sugar moiety on one side and a highly unusual isourea moiety fused to the terpenoid structure. The structures of the five analogues differed only in the aminoalkyl side chain attached to the isourea moiety. Persicamidines A-E showed potent activity against hCoV-229E and SARS-CoV-2 viruses in the nanomolar range together with very good selectivity indices, making persicamidines promising as starting points for drug development.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Antiviral Agents/chemistry , SARS-CoV-2 , Plant Extracts
16.
bioRxiv ; 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36482969

ABSTRACT

Vaccines are central to controlling the coronavirus disease 2019 (COVID-19) pandemic but the durability of protection is limited for currently approved COVID-19 vaccines. Further, the emergence of variants of concern (VoCs) that evade immune recognition has reduced vaccine effectiveness, compounding the problem. Here, we show that a single dose of a murine cytomegalovirus (MCMV)-based vaccine, which expresses the spike (S) protein of the virus circulating early in the pandemic (MCMVS), protects highly susceptible K18-hACE2 mice from clinical symptoms and death upon challenge with a lethal dose of D614G SARS-CoV-2. Moreover, MCMVS vaccination controlled two immune-evading VoCs, the Beta (B.1.135) and the Omicron (BA.1) variants in BALB/c mice, and S-specific immunity was maintained for at least 5 months after immunization, where neutralizing titers against all tested VoCs were higher at 5-months than at 1-month post-vaccination. Thus, cytomegalovirus (CMV)-based vector vaccines might allow for long-term protection against COVID-19.

17.
Pathogens ; 11(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36558888

ABSTRACT

Gammaherpesviruses, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are important human pathogens involved in lymphoproliferative disorders and tumorigenesis. Herpesvirus infections are characterized by a biphasic cycle comprised of an acute phase with lytic replication and a latent state. Murine gammaherpesvirus 68 (MHV-68) is a well-established model for the study of lytic and latent life cycles in the mouse. We investigated the interplay between the type I interferon (IFN)-mediated innate immune response and MHV-68 latency using sensitive bioluminescent reporter mice. Adoptive transfer of latently infected splenocytes into type I IFN receptor-deficient mice led to a loss of latency control. This was revealed by robust viral propagation and dissemination of MHV-68, which coincided with type I IFN reporter induction. Despite MHV-68 latency control by IFN, the continuous low-level cell-to-cell transmission of MHV-68 was detected in the presence of IFN signaling, indicating that IFN cannot fully prevent viral dissemination during latency. Moreover, impaired type I IFN signaling in latently infected splenocytes increased the risk of virus reactivation, demonstrating that IFN directly controls MHV-68 latency in infected cells. Overall, our data show that locally constrained type I IFN responses control the cellular reservoir of latency, as well as the distribution of latent infection to potential new target cells.

18.
Sci Rep ; 12(1): 19858, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400804

ABSTRACT

SARS-CoV-2 variants accumulating immune escape mutations provide a significant risk to vaccine-induced protection against infection. The novel variant of concern (VoC) Omicron BA.1 and its sub-lineages have the largest number of amino acid alterations in its Spike protein to date. Thus, they may efficiently escape recognition by neutralizing antibodies, allowing breakthrough infections in convalescent and vaccinated individuals in particular in those who have only received a primary immunization scheme. We analyzed neutralization activity of sera from individuals after vaccination with all mRNA-, vector- or heterologous immunization schemes currently available in Europe by in vitro neutralization assay at peak response towards SARS-CoV-2 B.1, Omicron sub-lineages BA.1, BA.2, BA.2.12.1, BA.3, BA.4/5, Beta and Delta pseudotypes and also provide longitudinal follow-up data from BNT162b2 vaccinees. All vaccines apart from Ad26.CoV2.S showed high levels of responder rates (96-100%) towards the SARS-CoV-2 B.1 isolate, and minor to moderate reductions in neutralizing Beta and Delta VoC pseudotypes. The novel Omicron variant and its sub-lineages had the biggest impact, both in terms of response rates and neutralization titers. Only mRNA-1273 showed a 100% response rate to Omicron BA.1 and induced the highest level of neutralizing antibody titers, followed by heterologous prime-boost approaches. Homologous BNT162b2 vaccination, vector-based AZD1222 and Ad26.CoV2.S performed less well with peak responder rates of 48%, 56% and 9%, respectively. However, Omicron responder rates in BNT162b2 recipients were maintained in our six month longitudinal follow-up indicating that individuals with cross-protection against Omicron maintain it over time. Overall, our data strongly argue for booster doses in individuals who were previously vaccinated with BNT162b2, or a vector-based primary immunization scheme.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Viral , COVID-19 Vaccines , RNA, Messenger , Ad26COVS1 , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Vaccination
19.
Front Immunol ; 13: 944713, 2022.
Article in English | MEDLINE | ID: mdl-35990661

ABSTRACT

In late 2021, the omicron variant of SARS Coronavirus 2 (SARS-CoV-2) emerged and replaced the previously dominant delta strain. Effectiveness of COVID-19 vaccines against omicron has been challenging to estimate in clinical studies or is not available for all vaccines or populations of interest. T cell function can be predictive of vaccine longevity and effectiveness against disease, likely in a more robust way than antibody neutralization. In this mini review, we summarize the evidence on T cell immunity against omicron including effects of boosters, homologous versus heterologous regimens, hybrid immunity, memory responses and vaccine product. Overall, T cell reactivity in post-vaccine specimens is largely preserved against omicron, indicating that vaccines utilizing the parental antigen continue to be protective against disease caused by the omicron variant.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , T-Lymphocytes , Vaccination
20.
Nat Commun ; 13(1): 3966, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803932

ABSTRACT

Understanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8+ T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection. The third vaccine dose of the single T cell epitope peptide results in superior generation of effector-memory T cells and tissue-resident memory T cells, and these tertiary vaccine-specific CD8+ T cells are characterized by enhanced polyfunctional cytokine production. Moreover, fate mapping shows that a substantial fraction of the tertiary CD8+ effector-memory T cells develop from re-migrated tissue-resident memory T cells. Thus, repeated booster vaccinations quantitatively and qualitatively improve the CD8+ T cell response leading to protection against otherwise lethal SARS-CoV-2 infection.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , Animals , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Disease Models, Animal , Immunologic Memory , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Vaccines, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...