Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 9(1): 128, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34289895

ABSTRACT

The medial temporal lobe (MTL) is a nidus for neurodegenerative pathologies and therefore an important region in which to study polypathology. We investigated associations between neurodegenerative pathologies and the thickness of different MTL subregions measured using high-resolution post-mortem MRI. Tau, TAR DNA-binding protein 43 (TDP-43), amyloid-ß and α-synuclein pathology were rated on a scale of 0 (absent)-3 (severe) in the hippocampus and entorhinal cortex (ERC) of 58 individuals with and without neurodegenerative diseases (median age 75.0 years, 60.3% male). Thickness measurements in ERC, Brodmann Area (BA) 35 and 36, parahippocampal cortex, subiculum, cornu ammonis (CA)1 and the stratum radiatum lacunosum moleculare (SRLM) were derived from 0.2 × 0.2 × 0.2 mm3 post-mortem MRI scans of excised MTL specimens from the contralateral hemisphere using a semi-automated approach. Spearman's rank correlations were performed between neurodegenerative pathologies and thickness, correcting for age, sex and hemisphere, including all four proteinopathies in the model. We found significant associations of (1) TDP-43 with thickness in all subregions (r = - 0.27 to r = - 0.46), and (2) tau with BA35 (r = - 0.31) and SRLM thickness (r = - 0.33). In amyloid-ß and TDP-43 negative cases, we found strong significant associations of tau with ERC (r = - 0.40), BA35 (r = - 0.55), subiculum (r = - 0.42) and CA1 thickness (r = - 0.47). This unique dataset shows widespread MTL atrophy in relation to TDP-43 pathology and atrophy in regions affected early in Braak stageing and tau pathology. Moreover, the strong association of tau with thickness in early Braak regions in the absence of amyloid-ß suggests a role of Primary Age-Related Tauopathy in neurodegeneration.


Subject(s)
Entorhinal Cortex/diagnostic imaging , Hippocampus/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging , Temporal Lobe/diagnostic imaging , Adult , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain Cortical Thickness , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Case-Control Studies , DNA-Binding Proteins/metabolism , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Female , Frontotemporal Lobar Degeneration/diagnostic imaging , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurofibrillary Tangles/pathology , Parahippocampal Gyrus/diagnostic imaging , Parahippocampal Gyrus/metabolism , Parahippocampal Gyrus/pathology , Pick Disease of the Brain/diagnostic imaging , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , Plaque, Amyloid/pathology , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , Temporal Lobe/metabolism , Temporal Lobe/pathology , alpha-Synuclein/metabolism , tau Proteins/metabolism
2.
J Comp Neurol ; 525(10): 2376-2393, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28317116

ABSTRACT

The medial prefrontal areas 32, 24, 14, and 25 (mPFC) form part of the limbic memory system, but little is known about their functional specialization in humans. To add anatomical precision to structural and functional magnetic resonance imaging (MRI) data, we aimed to identify these mPFC subareas in histological preparations of human brain tissue, determine sulci most consistently related with mPFC areal boundaries, and use these sulci to delineate mPFC areas in MRIs. To achieve this, we obtained three-dimensional MRI data from 11 ex vivo hemispheres and processed them for cyto- and myelo-architectonic analysis. The architectonic boundaries of mPFC areas were identified in histology and cortical surface length and volumes were measured. Unfolded maps of histologically determined boundaries were generated to identify the association of mPFC areal boundaries with sulci across cases. This analysis showed that cingulate and superior rostral were the sulci most consistently related to mPFC areal boundaries. Based on presence/absence and anastomosis between such sulci, 6 sulci patterns in the 11 hemispheres were found. A further analysis of 102 hemispheres of in vivo MRI scans (N = 51 males, mean ± SD 24.1 ± 3.1 years of age) showed similar sulci patterns, which allowed us to delineate the mFPC areas in them. The volumes of mPFC areas across histological, ex vivo and in vivo MRI delineations were comparable and probabilistic maps generated from the MRIs of the102 hemispheres. Probabilistic maps of mPFC areas were registered to MNI space and are available for regional analysis of functional magnetic resonance imaging data.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/diagnostic imaging , Adult , Female , Humans , Male , Middle Aged , Prefrontal Cortex/cytology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...