Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 156(6): 1958-64, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25830706

ABSTRACT

Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.


Subject(s)
Growth Hormone-Releasing Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Neuropeptides/therapeutic use , Somatostatin/therapeutic use , Animals , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction
2.
Oncogene ; 31(16): 2049-61, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-21927030

ABSTRACT

Somatostatin receptors (sst1-5) are present in different types of tumors, where they inhibit key cellular processes such as proliferation and invasion. Although ssts are densely expressed in breast cancer, especially sst2, their role and therapeutic potential remain uncertain. Recently, we identified a new truncated sst5 variant, sst5TMD4, which is related to the abnormal response of certain pituitary tumors to treatment with somatostatin analogs. Here, we investigated the possible role of sst5TMD4 in breast cancer. This study revealed that sst5TMD4 is absent in normal mammary gland, but is abundant in a subset of poorly differentiated human breast tumors, where its expression correlated to that of sst2. Moreover, in the MCF-7 breast cancer model cell, sst5TMD4 expression increased malignancy features such as invasion and proliferation abilities (both in cell cultures and nude mice). This was likely mediated by sst5TMD4-induced increase in phosphorylated extracellular signal-regulated kinases 1 and 2 and p-Akt levels, and cyclin D3 and Arp2/3 complex expression, which also led to mesenchymal-like phenotype. Interestingly, sst5TMD4 interacts physically with sst2 and thereby alters its signaling, enabling disruption of sst2 inhibitory feedback and providing a plausible basis for our findings. These results suggest that sst5TMD4 could be involved in the pathophysiology of certain types of breast tumors.


Subject(s)
Breast Neoplasms/metabolism , Genetic Variation , Receptors, Somatostatin/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , MAP Kinase Kinase 1/metabolism , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation , Oncogene Protein v-akt/metabolism , Phosphorylation , Prognosis , Somatostatin/physiology
3.
J Neuroendocrinol ; 24(3): 453-63, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22129035

ABSTRACT

Somatostatin and cortistatin have been shown to act directly on pituitary somatotrophs to inhibit growth hormone (GH) release. However, previous results from nonprimate species indicate that these peptides can also directly stimulate GH secretion, at low concentrations. The relevance of this phenomenon in a nonhuman primate model was investigated in the present study by testing the impact of somatostatin/cortistatin on GH release in primary pituitary cell cultures from baboons. High doses (> 10(-10) m) of somatostatin/cortistatin did not alter basal GH secretion but blocked GH-releasing hormone (GHRH)- and ghrelin-induced GH release. However, at low concentrations (10(-17)-10(-13) m), somatostatin/cortistatin dramatically stimulated GH release to levels comparable to those evoked by GHRH or ghrelin. Use of somatostatin receptor (sst) specific agonists/antagonists, and signal transduction blockers indicated that sst2 and sst1 activation via intact adenylate cylcase and mitogen-activated protein kinase systems mediated the inhibitory actions of high-concentration somatostatin. By contrast, the stimulatory actions of low-dose somatostatin on GH release were mediated by sst5 signalling through adenylate cylcase/cAMP/protein kinase A and intracellular Ca(2+) pathways, and were additive with ghrelin (not GHRH). Notably, low-concentrations of somatostatin, similar to sst5-agonists, inhibited prolactin release. These results clearly demonstrate that the ultimate impact of somatostatin/cortistatin on hormone release is dose-dependent, cell type-selective and receptor-specific, where the stimulatory effects of low-concentration somatostatin/cortistatin on GH release extend to primates, thereby supporting the notion that this action is relevant in regulating GH secretion in humans.


Subject(s)
Cyclic AMP/physiology , Growth Hormone/metabolism , Pituitary Gland/drug effects , Receptors, Somatostatin/physiology , Somatostatin/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , Papio , Pituitary Gland/cytology , Pituitary Gland/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...