Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Cardiol ; 75(4): 395-405, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32000951

ABSTRACT

BACKGROUND: Mitral leaflet enlargement has been identified as an adaptive mechanism to prevent mitral regurgitation in dilated left ventricles (LVs) caused by chronic aortic regurgitation (AR). This enlargement is deficient in patients with functional mitral regurgitation, which remains frequent in the population with ischemic cardiomyopathy. Maladaptive fibrotic changes have been identified in post-myocardial infarction (MI) mitral valves. It is unknown if these changes can interfere with valve growth and whether they are present in other valves. OBJECTIVES: This study sought to test the hypothesis that MI impairs leaflet growth, seen in AR, and induces fibrotic changes in mitral and tricuspid valves. METHODS: Sheep models of AR, AR + MI, and controls were followed for 90 days. Cardiac magnetic resonance, echocardiography, and computed tomography were performed at baseline and 90 days to assess LV volume, LV function, mitral regurgitation and mitral leaflet size. Histopathology and molecular analyses were performed in excised valves. RESULTS: Both experimental groups developed similar LV dilatation and dysfunction. At 90 days, mitral valve leaflet size was smaller in the AR + MI group (12.8 ± 1.3 cm2 vs. 15.1 ± 1.6 cm2, p = 0.03). Mitral regurgitant fraction was 4% ± 7% in the AR group versus 19% ± 10% in the AR + MI group (p = 0.02). AR + MI leaflets were thicker compared with AR and control valves. Increased expression of extracellular matrix remodeling genes was found in both the mitral and tricuspid leaflets in the AR + MI group. CONCLUSIONS: In these animal models of AR, the presence of MI was associated with impaired adaptive valve growth and more functional mitral regurgitation, despite similar LV size and function. More pronounced extracellular remodeling was observed in mitral and tricuspid leaflets, suggesting systemic valvular remodeling after MI.


Subject(s)
Mitral Valve Insufficiency/physiopathology , Mitral Valve/diagnostic imaging , Myocardial Infarction/complications , Ventricular Remodeling , Animals , Aortic Valve Insufficiency/complications , Echocardiography, Three-Dimensional , Extracellular Matrix/metabolism , Female , Fibrosis , Magnetic Resonance Imaging , Male , Myocardial Ischemia/complications , Sheep , Tomography, X-Ray Computed , Tricuspid Valve/diagnostic imaging
2.
Curr Treat Options Cardiovasc Med ; 19(12): 91, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29027633

ABSTRACT

OPINION STATEMENT: Mitral regurgitation (MR) is frequent and associated with increased mortality and morbidity when severe. It may be caused by intrinsic valvular disease (primary MR) or ventricular deformation (secondary MR). Imaging has a critical role to document the severity, mechanism, and impact of MR on heart function as selected patients with MR may benefit from surgery whereas other will not. In patients planned for a surgical intervention, imaging is also important to select candidates for mitral valve (MV) repair over replacement and to predict surgical success. Although standard transthoracic echocardiography is the first-line modality to evaluate MR, newer imaging modalities like three-dimensional (3D) transesophageal echocardiography, stress echocardiography, cardiac magnetic resonance (CMR), and computed tomography (CT) are emerging and complementary tools for MR assessment. While some of these modalities can provide insight into MR severity, others will help to determine its mechanism. Understanding the advantages and limitations of each imaging modality is important to appreciate their respective role for MR assessment and help to resolve eventual discrepancies between different diagnostic methods. With the increasing use of transcatheter mitral procedures (repair or replacement) for high-surgical-risk patients, multimodality imaging has now become even more important to determine eligibility, preinterventional planning, and periprocedural guidance.

SELECTION OF CITATIONS
SEARCH DETAIL
...