Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 445
Filter
1.
J Cell Commun Signal ; 18(2): e12021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946718

ABSTRACT

lncRNA ZFAS1 was identified to facilitate thyroid cancer, but its role in medullary thyroid carcinoma (MTC) remains unknown. This study aimed to unravel the potential function of this lncRNA in MTC by investigating the involvement of the lncRNA ZFAS1 in a ceRNA network that regulates MTC invasion. Proliferation, invasion, and migration of cells were evaluated using EdU staining and Transwell assays. Immunoprecipitation (IP) assays, dual-fluorescence reporter, and RNA IP assays were employed to examine the binding interaction among genes. Nude mice were used to explore the role of lncRNA ZFAS1 in MTC in vivo. ZFAS1 and EPAS1 were upregulated in MTC. Silencing ZFAS1 inhibited MTC cell proliferation and invasion under hypoxic conditions, which reduced EPAS1 protein levels. UCHL1 knockdown increased EPAS1 ubiquitination. ZFAS1 positively regulated UCHL1 expression by binding to miR-214-3p. Finally, silencing ZFAS1 significantly repressed tumor formation and metastasis in MTC. LncRNA ZFAS1 promotes invasion of MTC by upregulating EPAS1 expression via the miR-214-3p/UCHL1 axis.

3.
Heliyon ; 10(12): e32351, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988534

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory disease. Psoralen (PSO) is the main pharmacological component identified from Bu-Shen-Fang-Chuan formula which has been traditionally used in treatment of COPD, yet its efficacy in COPD inflammation were unreported. In this study, we aimed to elucidate the anti-inflammatory potential of PSO in COPD and unravel the underlying mechanisms, focusing on T lymphocyte recruitment and the modulation of chemokines, namely monokine induced by interferon-gamma (CXCL9), interferon inducible protein 10 (CXCL10), and interferon inducible T-Cell alpha chemoattractant (CXCL11). In vitro, RAW264.7 was stimulated by interferon (IFN)-γ + cigarette smoke extract (CSE) and were treated with PSO (2.5, 5, 10 µM), then the levels of chemokines and the activation of Janus kinase (JAK)/Signal transducer and activator of transcription 1 (STAT1) pathway were analyzed by real time PCR and western blot. In vivo, a murine model was established by intraperitoneal injection of CSE on day 1, 8, 15, and 22, then treated with PSO (10 mg/kg). Our experiments in vitro illustrated that PSO reduced the levels of CXCL9, CXCL10, and CXCL11, and decreased the protein phosphorylation levels of JAK2 and STAT1. Additionally, PSO effectively improved inflammatory infiltration and decreased the proportion of CD8+ T cells in CSE-exposed mice. Furthermore, PSO reduced the levels of CXCL9, CXCL10, and CXCL11 in bronchoalveolar lavage fluid (BALF) and lung tissue, and decreased the protein phosphorylation levels of JAK2 and STAT1. In conclusion, our results revealed the therapeutic potential of PSO for COPD inflammation, possibly mediated through the regulation of CD8+ T cell recruitment and chemokines via the JAK2/STAT1 signaling pathway.

4.
Br J Pharmacol ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881194

ABSTRACT

BACKGROUND AND PURPOSE: Depression is closely linked with microglial activation and neuro-inflammation. Peroxisome proliferator-activated receptor-γ (PPAR-γ) plays an important role in M2 activation of microglia. Forkhead box (FOX) O3a has been implicated in the regulation of mood-relevant behaviour. However, little is known about the inflammatory mechanisms of in the microglia of the brain. Here, we have investigated the role of microglial FOXO3a/PPAR-γ in the development of depression. EXPERIMENTAL APPROACH: The effect of FOXO3a on microglia inflammation was analysed in vitro and in lipopolysaccharide (LPS)-induced depression-like behaviours in vivo. ChIP-seq and Dual-luciferase reporter assays were used to confirm the interaction between FOXO3a and PPAR-γ. Behavioural changes were measured, while inflammatory cytokines, microglial phenotype and morphological properties were determined by ELISA, qRT-PCR, western blotting and immunostaining. KEY RESULTS: Overexpression of FOXO3a significantly attenuated expression of PPAR-γ and enhanced the microglial polarization towards the M1 phenotype, while knockdown of FOXO3a had the opposite effect. FOXO3a binds to the promoters of PPAR-γ and decreases its transcription activity. Importantly, deacetylation and activation of FOXO3a regulate LPS-induced neuro-inflammation by inhibiting the expression of PPAR-γ in microglia cells, supporting the antidepressant potential of histone deacetylase inhibitors. Microglial FOXO3a deficiency in mice alleviated LPS-induced neuro-inflammation and depression-like behaviours but failed to reduce anxiety behaviour, whereas pharmacological inhibition of PPAR-γ by GW9662 restored LPS-induced microglial activation and depressive-like behaviours in microglial FOXO3a-deficient mice. CONCLUSION AND IMPLICATIONS: FOXO3a/PPAR-γ axis plays an important role in microglial activation and depression, identifying a new therapeutic avenue for the treatment of major depression.

5.
Oncogene ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937602

ABSTRACT

Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells. Further, ESRRA expression and activity were relatively high in thyroid tumors with oncocytic characteristics, wherein ESRRA and mortalin exhibited relatively high functional overlap. Mechanistically, ESRRA directly regulated HSPA9 transcription through a novel ESRRA-responsive element located upstream of the HSPA9 promoter. Physiologically, ESRRA depletion suppressed thyroid tumor cell survival via caspase-dependent apoptosis, which ectopic mortalin expression substantially abrogated. ESRRA depletion also effectively suppressed tumor growth and mortalin expression in the xenografts of oncocytic or ESRRA-overexpressing human thyroid tumor cells in mice. Notably, our Bioinformatics analyses of patient data revealed two ESRRA target gene clusters that contrast oncocytic-like and anaplastic features of follicular thyroid tumors. These findings suggest that ESRRA is a tumor-specific regulator of mortalin expression, the ESRRA-mortalin axis has higher significance in tumors with oncocytic characteristics, and ESRRA target gene networks can refine molecular classification of thyroid cancer.

6.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893317

ABSTRACT

Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.

8.
Article in English | MEDLINE | ID: mdl-38842240

ABSTRACT

BACKGROUND: Immune infiltration plays a vital role in the course of acute myocardial infarction (AMI). Cuproptosis is a new type of programmed cell death discovered recently. Currently, there is no study on the mechanism of cuproptosis gene regulating immune infiltration in AMI. Therefore, by integrating cuproptosis-related genes and GEO database-related microarray data, this study analyzed the association between cuproptosis genes and immune infiltration and built a risk model. METHODS: The GSE59867 was used to extract cuproptosis gene expression profile. The R limma package was used to analyze the differentially expressed genes associated with AMI-Cuproptosis. The risk model was constructed according to AMI-cuproptosis differentially expressed genes. Prediction of AMI-cuproptosis-related gene drugs through Coremine Medical database. The upstream miRNAs were predicted using miRWalk, TargetScan, and miRDB libraries, and a miRNA-mRNA network was constructed. RESULTS: Cuproptosis-related genes (DLST, LIAS, DBT, ATP7A, LIPT1, PDHB, GCSH, DLD, DLAT) were down-regulated in AMI patients. One (ATP7B) gene was up-regulated in AMI patients (P<0.05). These 10 Cuproptosis-related genes were significantly associated with immune cell infiltration. Based on these 10 differential genes, the AMI risk prediction model was constructed, and the AUC value was 0.825, among which the abnormal expression of DLST was a risk factor for AMI. Additionally, we also predicted DLAT upstream miRNAs and associated drug targets, finding that 9 miRNAs were upstream of DLST. CONCLUSIONS: DLST is a potential cuproptosis gene associated with AMI, but its specific mechanism remains unclear and requires further investigation in future studies.

9.
Food Chem ; 455: 139849, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823120

ABSTRACT

To study the effect of starch-polyphenol interaction induced by different processing methods on digestion characteristics, a dynamic in vitro human gastrointestinal system was employed to investigate the digestive characteristics of lotus seed starch-epigallocatechin gallate (EGCG) complex (LS-EGCG) prepared by different processing methods. Digestion altered crystal structure, particle size, morphology, pH, starch hydrolysis, and EGCG content. Processing broke physical barriers, reducing particle size by enzyme erosion. Enzymatic hydrolysis gradually exposed EGCG, indicated by green fluorescence. Heat and high pressure treatments enhanced starch dissolution, increasing sugar accumulation and hydrolysis. However, ultrasonic-microwave and high pressure microfluidization treatments formed dense structures, decreasing hydrolysis rates. Overall, the complex formed by high pressure microfluidization showed better enzyme resistance. The results provide a scientific basis for the development of food with quality and functional properties.


Subject(s)
Catechin , Digestion , Lotus , Seeds , Starch , Lotus/chemistry , Seeds/chemistry , Starch/chemistry , Starch/metabolism , Humans , Catechin/chemistry , Catechin/analogs & derivatives , Particle Size , Hydrolysis , Food Handling , Models, Biological , Plant Extracts/chemistry
10.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Article in English | MEDLINE | ID: mdl-38725448

ABSTRACT

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Subject(s)
Antiviral Agents , Heme Oxygenase-1 , Herpesviridae Infections , NF-E2-Related Factor 2 , Oxidative Stress , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/therapeutic use , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Mice , Herpesviridae Infections/drug therapy , Antiviral Agents/pharmacology , Virus Replication/drug effects , Disease Models, Animal , Antioxidants/pharmacology , Cell Line , Viral Load/drug effects , Horses , Female , Membrane Proteins
11.
Microorganisms ; 12(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38792768

ABSTRACT

The biological degradation of plant residues in the soil or on the soil surface is an integral part of the natural life cycle of annual plants and does not have adverse effects on the environment. Crop straw is characterized by a complex structure and exhibits stability and resistance to rapid microbial decomposition. In this study, we conducted a microcosm experiment to investigate the dynamic succession of the soil microbial community and the functional characteristics associated with lignocellulose-degrading pathways. Additionally, we aimed to identify lignocellulose-degrading microorganisms from the straw of three crop species prevalent in Northeast China: soybean (Glycine max Merr.), rice (Oryza sativa L.), and maize (Zea mays L.). Our findings revealed that both the type of straw and the degradation time influenced the bacterial and fungal community structure and composition. Metagenome sequencing results demonstrated that during degradation, different straw types assembled carbohydrate-active enzymes (CAZymes) and KEGG pathways in distinct manners, contributing to lignocellulose and hemicellulose degradation. Furthermore, isolation of lignocellulose-degrading microbes yielded 59 bacterial and 14 fungal strains contributing to straw degradation, with fungi generally exhibiting superior lignocellulose-degrading enzyme production compared to bacteria. Experiments were conducted to assess the potential synergistic effects of synthetic microbial communities (SynComs) comprising both fungi and bacteria. These SynComs resulted in a straw weight loss of 42% at 15 days post-inoculation, representing a 22% increase compared to conditions without any SynComs. In summary, our study provides novel ecological insights into crop straw degradation by microbes.

12.
Cortex ; 176: 1-10, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723449

ABSTRACT

Recognizing talkers' identity via speech is an important social skill in interpersonal interaction. Behavioral evidence has shown that listeners can identify better the voices of their native language than those of a non-native language, which is known as the language familiarity effect (LFE). However, its underlying neural mechanisms remain unclear. This study therefore investigated how the LFE occurs at the neural level by employing functional near-infrared spectroscopy (fNIRS). Late unbalanced bilinguals were first asked to learn to associate strangers' voices with their identities and then tested for recognizing the talkers' identities based on their voices speaking a language either highly familiar (i.e., native language Chinese), or moderately familiar (i.e., second language English), or completely unfamiliar (i.e., Ewe) to participants. Participants identified talkers the most accurately in Chinese and the least accurately in Ewe. Talker identification was quicker in Chinese than in English and Ewe but reaction time did not differ between the two non-native languages. At the neural level, recognizing voices speaking Chinese relative to English/Ewe produced less activity in the inferior frontal gyrus, precentral/postcentral gyrus, supramarginal gyrus, and superior temporal sulcus/gyrus while no difference was found between English and Ewe, indicating facilitation of voice identification by the automatic phonological encoding in the native language. These findings shed new light on the interrelations between language ability and voice recognition, revealing that the brain activation pattern of the LFE depends on the automaticity of language processing.


Subject(s)
Language , Recognition, Psychology , Spectroscopy, Near-Infrared , Speech Perception , Voice , Humans , Spectroscopy, Near-Infrared/methods , Female , Male , Recognition, Psychology/physiology , Young Adult , Voice/physiology , Speech Perception/physiology , Adult , Multilingualism , Brain Mapping , Reaction Time/physiology , Brain/physiology , Brain/diagnostic imaging
13.
Sci Rep ; 14(1): 11671, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778051

ABSTRACT

This study delves into the effectiveness of combining remimazolam with low-dose propofol in pediatric fiberoptic bronchoscopy. Ninety children scheduled for fiberoptic bronchoscopy in our hospital were enrolled as research participants. Based on the intraoperative anesthetic drug regimen, the children were divided into three groups: group R (remimazolam 0.2-0.4 mg/kg), group P (propofol 1-3 mg/kg), and group RP (remimazolam0.2 mg/kg, propofol 0.5 mg/kg). Immediately post-anesthesia, group P exhibited lower blood pressure and heart rate (HR) compared to both group R and group RP (P < 0.05). As bronchoscope approached the glottis and epiglottis, group P continued to display lower blood pressure and HR compared to group R and group RP (P < 0.05). During lavage, group P maintained lower blood pressure and HR compared to both the R and RP groups (P < 0.05). Immediately post-anesthesia, group P demonstrated lower SpO2 compared to the R and RP groups (P < 0.05).During lavage, group P maintained lower SpO2 than group R and group RP (P < 0.05). In comparison with group R and group PR, group P showed shortened induction and recovery times (P < 0.05). The one-time entry success rate into the microscope was higher in group R than in group P, with the RP group showing an intermediate decreased (P < 0.05). Moreover, the cough score in R group was higher than in the P and RP groups (P < 0.05). Furthermore, the satisfaction rates of the RP group exceeded those of the R and P groups (P < 0.05). Remimazolam combined with low-dose propofol effectively balances the strengths and weaknesses of remimazolam and propofol, ensuring more stable hemodynamics, a lower incidence of adverse reactions, and optimal surgical conditions in pediatric fiberoptic bronchoscopy.


Subject(s)
Bronchoscopy , Propofol , Humans , Bronchoscopy/methods , Propofol/administration & dosage , Female , Male , Child, Preschool , Child , Blood Pressure/drug effects , Heart Rate/drug effects , Fiber Optic Technology/methods , Infant , Hypnotics and Sedatives/administration & dosage , Benzodiazepines
14.
Food Res Int ; 184: 114247, 2024 May.
Article in English | MEDLINE | ID: mdl-38609226

ABSTRACT

Konjac glucomannan (KGM) can significantly prolong gastrointestinal digestion. However, it is still worth investigating whether the macromolecular crowding (MMC) induced by KGM is correlated with digestion. In this paper, the MMC effect was quantified by fluorescence resonance energy transfer and microrheology, and the digests of starch, protein, and oil were determined. The digestive enzymes were analyzed by enzyme reaction kinetic and fluorescence quenching. The results showed that higher molecular weight (604.85 âˆ¼ 1002.21 kDa) KGM created a larger MMC (>0.8), and influenced the digestion of macronutrients; the digests of starch, protein, and oil all decreased significantly. MMC induced by KGM decreased the Michaelis-Menten constants (Km and Vmax) of pancreatic α-amylase (PPA), pepsin (PEP), and pancreatic lipase (PPL). The larger MMC (>0.8) induced by KGM resulted in the decrease of fluorescence quenching constants (Ksv) in PPA and PPL, and the increase of Ksv in PEP. Therefore, varying degrees of MMC induced by KGM could play a role in regulating digestion and the inhibitory effect on digestion was more significant in a relatively more crowded environment induced by KGM. This study provides theoretical support for the strategies of nutrient digestion regulation from the perspective of MMC caused by dietary fiber.


Subject(s)
Mannans , Pepsin A , Spectrometry, Fluorescence , Macromolecular Substances , Pancreatic alpha-Amylases , Starch
15.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38634689

ABSTRACT

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

16.
Clin Transl Oncol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467894

ABSTRACT

BACKGROUND AND OBJECTIVE: Neoadjuvant chemotherapy results in various responses when used to treat locally advanced gastric cancer, we aimed to develop and validate a predictive model of the response to neoadjuvant chemotherapy in patients with gastric cancer. METHODS: A total of 128 patients with locally advanced gastric cancer who underwent pre-treatment computed tomography (CT) scanning followed by neoadjuvant chemoradiotherapy were included (training cohort: n = 64; validation cohort: n = 64). We built a radiomics score combined with laboratory parameters to create a nomogram for predicting the efficacy of neoadjuvant chemotherapy and calculating scores for risk factors. RESULTS: The radiomics score system demonstrated good stability and prediction performance for the response to neoadjuvant chemotherapy, with the area under the curve of the training and validation cohorts being 0.8 and 0.64, respectively. The radiomics score proved to be an independent risk factor affecting the efficacy of neoadjuvant chemotherapy. In addition to the radiomics score, four other risk factors were included in the nomogram, namely the platelet-to-lymphocyte ratio, total bilirubin, ALT/AST, and CA199. The model had a C-index of 0.8. CONCLUSIONS: Our results indicated that radiomics features could be potential biomarkers for the early prediction of the response to neoadjuvant treatment.

17.
PeerJ ; 12: e17111, 2024.
Article in English | MEDLINE | ID: mdl-38525272

ABSTRACT

Background: Lymph node involvement significantly impacts the survival of gastric cancer patients and is a crucial factor in determining the appropriate treatment. This study aimed to evaluate the potential of enhanced computed tomography (CT)-based radiomics in predicting lymph node metastasis (LNM) and survival in patients with gastric cancer before surgery. Methods: Retrospective analysis of clinical data from 192 patients diagnosed with gastric carcinoma was conducted. The patients were randomly divided into a training cohort (n = 128) and a validation cohort (n = 64). Radiomic features of CT images were extracted using the Pyradiomics software platform, and distinctive features were further selected using a Lasso Cox regression model. Features significantly associated with LNM were identified through univariate and multivariate analyses and combined with radiomic scores to create a nomogram model for predicting lymph node involvement before surgery. The predictive performance of radiomics features, CT-reported lymph node status, and the nomogram model for LNM were compared in the training and validation cohorts by plotting receiver operating characteristic (ROC) curves. High-risk and low-risk groups were identified in both cohorts based on the cut-off value of 0.582 within the radiomics evaluation scheme, and survival rates were compared. Results: Seven radiomic features were identified and selected, and patients were stratified into high-risk and low-risk groups using a 0.582 cut-off radiomics score. Univariate and multivariate analyses revealed that radiomics features, diabetes mellitus, Nutrition Risk Screening (NRS) 2002 score, and CT-reported lymph node status were significant predictors of LNM in patients with gastric cancer. A predictive nomogram model was developed by combining these predictors with the radiomics score, which accurately predicted LNM in gastric cancer patients before surgery and outperformed other models in terms of accuracy and sensitivity. The AUC values for the training and validation cohorts were 0.82 and 0.722, respectively. The high-risk and low-risk groups in both the training and validation cohorts showed significant differences in survival rates. Conclusion: The radiomics nomogram, based on contrast-enhanced computed tomography (CECT ), is a promising non-invasive tool for preoperatively predicting LNM in gastric cancer patients and postoperative survival.


Subject(s)
Stomach Neoplasms , Humans , Lymphatic Metastasis/diagnostic imaging , Nomograms , Radiomics , Retrospective Studies , Stomach Neoplasms/diagnostic imaging , Tomography, X-Ray Computed
18.
World J Gastroenterol ; 30(7): 714-727, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38515951

ABSTRACT

BACKGROUND: Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM: To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS: Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS: Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION: Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Animals , Mice , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Pancreatic Neoplasms/pathology , Cell Survival , Adenocarcinoma/pathology , Mice, Nude , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Quinazolines , Cell Line, Tumor , ErbB Receptors , Mitochondria/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Proliferation
19.
Poult Sci ; 103(5): 103622, 2024 May.
Article in English | MEDLINE | ID: mdl-38513550

ABSTRACT

Ammonia (NH3) is a toxic gas that in intensive poultry houses, damages the poultry health and induces various diseases. This study investigated the effects of NH3 exposure (0, 15, 30, and 45 ppm) on growth performance, serum biochemical indexes, antioxidative indicators, tracheal and lung impairments in Pekin ducks. A total of 288 one-day-old Pekin male ducks were randomly allocated to 4 groups with 6 replicates and slaughtered after the 21-d test period. Our results showed that 45 ppm NH3 significantly reduced the average daily feed intake (ADFI) of Pekin ducks. Ammonia exposure significantly reduced liver, lung, kidney, and heart indexes, and lowered the relative weight of the ileum. With the increasing of in-house NH3, serum NH3 and uric acid (UA) concentrations of ducks were significantly increased, as well as liver malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX-Px) contents. High NH3 also induced trachea and lung injury, thereby increasing levels of tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) in the lung, and decreasing the mRNA expressions of zonula occludens 1 (ZO-1) and claudin 3 (CLDN3) in the lung. In conclusion, in-house NH3 decrease the growth performance in ducks, induce trachea and lung injuries and meanwhile increase the compensatory antioxidant activity for host protection.


Subject(s)
Ammonia , Ducks , Oxidative Stress , Poultry Diseases , Animals , Ducks/physiology , Ducks/growth & development , Ammonia/toxicity , Ammonia/metabolism , Male , Oxidative Stress/drug effects , Poultry Diseases/chemically induced , Poultry Diseases/metabolism , Random Allocation , Housing, Animal , Dose-Response Relationship, Drug
20.
Adv Healthc Mater ; 13(14): e2304284, 2024 06.
Article in English | MEDLINE | ID: mdl-38319961

ABSTRACT

Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.


Subject(s)
Drug Delivery Systems , Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Animals , Drug Delivery Systems/methods , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Biomimetic Materials/chemistry , Biomimetics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...