Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 625
Filter
2.
Nat Methods ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965442

ABSTRACT

Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.

3.
Front Microbiol ; 15: 1419615, 2024.
Article in English | MEDLINE | ID: mdl-38952452

ABSTRACT

African swine fever (ASF) is an infectious disease characterized by hemorrhagic fever, which is highly pathogenic and causes severe mortality in domestic pigs. It is caused by the African swine fever virus (ASFV). ASFV is a large DNA virus and primarily infects porcine monocyte macrophages. The interaction between ASFV and host macrophages is the major reason for gross pathological lesions caused by ASFV. Necroptosis is an inflammatory programmed cell death and plays an important immune role during virus infection. However, whether and how ASFV induces macrophage necroptosis and the effect of necroptosis signaling on host immunity and ASFV infection remains unknown. This study uncovered that ASFV infection activates the necroptosis signaling in vivo and macrophage necroptosis in vitro. Further evidence showed that ASFV infection upregulates the expression of ZBP1 and RIPK3 to consist of the ZBP1-RIPK3-MLKL necrosome and further activates macrophage necroptosis. Subsequently, multiple Z-DNA sequences were predicted to be present in the ASFV genome. The Z-DNA signals were further confirmed to be present and colocalized with ZBP1 in the cytoplasm and nucleus of ASFV-infected cells. Moreover, ZBP1-mediated macrophage necroptosis provoked the extracellular release of proinflammatory cytokines, including TNF-α and IL-1ß induced by ASFV infection. Finally, we demonstrated that ZBP1-mediated necroptosis signaling inhibits ASFV replication in host macrophages. Our findings uncovered a novel mechanism by which ASFV induces macrophage necroptosis by facilitating Z-DNA accumulation and ZBP1 necrosome assembly, providing significant insights into the pathogenesis of ASFV infection.

4.
Mol Carcinog ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896079

ABSTRACT

Endoplasmic reticulum (ER) stress is a primary mechanism leading to cell apoptosis, making it of great research interests in cancer management. This study delves into the function of ribosomal protein L5 (RPL5) in ER stress within pancreatic cancer (PCa) cells and investigates its regulatory mechanisms. Bioinformatics predictions pinpointed RPL5 as an ER stress-related gene exhibiting diminished expression in PCa. Indeed, RPL5 was found to be poorly expressed in PCa tissues and cells, with this reduced expression correlating with an unfavorable prognosis. Moreover, RPL5 overexpression led to heightened levels of p-PERK, p-eIF2α, and CHOP, bolstering the proapoptotic effect of Tunicamycin, an ER stress activator, on PCa cells. Additionally, the RPL5 overexpression curbed cell proliferation, migration, and invasion. Tunicamycin enhanced the binding between RPL5 and murine double minute 2 (MDM2), thus suppressing MDM2-mediated ubiquitination and degradation of P53. Consequently, P53 augmentation intensified ER stress, which further enhanced the binding between RPL5 and MDM2 through PERK-dependent eIF2α phosphorylation, thereby establishing a positive feedback loop. Zinc finger and BTB domain containing 7A (ZBTB7A), conspicuously overexpressed in PCa samples, repressed RPL5 transcription, thereby reducing P53 expression. Silencing of ZBTB7A heightened ER stress and subdued the malignant attributes of PCa cells, effects counteracted upon RPL5 silencing. Analogous outcomes were recapitulated in vivo employing a xenograft tumor mouse model, where ZBTB7A silencing dampened the tumorigenic potential of PCa cells, an effect reversed by additional RPL5 silencing. In conclusion, this study suggests that ZBTB7A represses RPL5 transcription, thus impeding the RPL5-P53 feedback loop and mitigating ER-induced apoptosis in PCa cells.

5.
Article in English | MEDLINE | ID: mdl-38918298

ABSTRACT

Azotobacter chroococcum and Bacillus subtilis were selected as fermentation strains, and biogas residue after anaerobic digestion of kitchen waste and residual sludge was used as fermentation substrate. A single factor optimization test was used to optimize the solid-state fermentation parameters of biogas residue with the number of viable bacteria and the number of spores as indexes. The results showed that the optimum inoculation conditions involved the following: 55% initial moisture content, 15% initial inoculation amount, 30 ℃, and 1:1 initial inoculation ratio for 13 days. Pot experiment showed that the prepared three kinds of bacterial fertilizers could not only effectively promote the growth of white clover, improve the composition of soil nutrients, but also change the structure of soil bacterial community, which is of great significance to the health of soil ecosystem in white clover.

6.
Mol Pharm ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920116

ABSTRACT

The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.

7.
Curr Opin Struct Biol ; 87: 102866, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909586

ABSTRACT

The nucleolus functions as a multi-layered regulatory hub for ribosomal RNA (rRNA) biogenesis and ribosome assembly. Long noncoding RNAs (lncRNAs) in the nucleolus, originated from transcription by different RNA polymerases, have emerged as critical players in not only fine-tuning rRNA transcription and processing, but also shaping the organization of the multi-phase nucleolar condensate. Here, we review the diverse molecular mechanisms by which functional lncRNAs operate in the nucleolus, as well as their profound implications in a variety of biological processes. We also highlight the development of emerging molecular tools for characterizing and manipulating RNA function in living cells, and how application of such tools in the nucleolus might enable the discovery of additional insights and potential therapeutic strategies.

8.
Langmuir ; 40(26): 13446-13457, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38877986

ABSTRACT

Efficient charge carrier transport characteristics are critical to achieving the excellent performance of metal-oxide semiconductor gas sensors. Herein, SnO2/CeO2 heterojunction layered nanosheets with abundant oxygen vacancies were successfully synthesized through a simple solvothermal assisted high-temperature calcination method. The synergistic effect of oxygen vacancies and heterojunctions promoting the charge carrier transport properties at the SnO2/CeO2 interface for the enhanced sensing properties of triethylamine (TEA) was highlighted. As a result, the optimized SnO2/CeO2 exhibits improved gas sensing performance at 173 °C to 50 ppm of TEA. These include high response (205), excellent selectivity, low detection limit, and good long-term stability. This enhanced gas sensing property of SnO2/CeO2 is mainly attributed to the fact that the heterojunction and oxygen vacancies act as dual active sites synergistically inducing electron transfer, thereby effectively modulating the transport properties of the interfacial charge carriers, and thus facilitate the surface reactions efficiently. In this work, the dual-engineering strategy of synergistic interaction of heterojunction and oxygen vacancies can provide new perspectives for the design of advanced gas sensing materials.

9.
Front Med (Lausanne) ; 11: 1385358, 2024.
Article in English | MEDLINE | ID: mdl-38873213

ABSTRACT

Objective: To explore the relationship between plasma lactoferrin (Lf) and glaucoma, assessing the clinical utility of Lf in glaucoma. Methods: A cross-sectional study involved 161 glaucoma patients and 115 healthy controls, with a follow-up of 14 subjects after approximately 2 years. Plasma Lf markers were quantified using ELISA, comparing levels between glaucoma patients and healthy controls, and analyzing plasma Lf across different glaucoma severity grades. Results: Glaucoma patients had significantly elevated plasma Lf levels compared to healthy controls (p < 0.001). Higher plasma Lf levels correlated with more severe disease stages (HPA grades showed ρ = 0.435, p < 0.001; AGIS grades showed ρ = 0.436, p < 0.001) and reduced retinal nerve fiber layer (RNFL) thickness (RNFL thickness showed ρ = -0.204, p = 0.024). ROC curve analysis demonstrated the efficacy of glaucoma markers in differentiating early-stage from advanced glaucoma. Conclusion: Plasma Lf levels are significantly associated with glaucoma severity and may be involved in the pathogenic progression of the disease.

10.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38838666

ABSTRACT

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Subject(s)
Active Transport, Cell Nucleus , Adenosine , Cell Nucleus , Neurogenesis , Neurons , Poly(A)-Binding Protein I , RNA, Circular , RNA , RNA, Circular/metabolism , RNA, Circular/genetics , Neurons/metabolism , Adenosine/metabolism , Cell Nucleus/metabolism , Humans , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Protein I/genetics , Animals , RNA/metabolism , RNA/genetics , Cell Line , Cell Differentiation , Cytoplasm/metabolism , Prosencephalon/metabolism
11.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38809753

ABSTRACT

Pueraria montana var. lobata (P. lobata) is a traditional medicinal plant belonging to the Pueraria genus of Fabaceae family. Pueraria montana var. thomsonii (P. thomsonii) and Pueraria montana var. montana (P. montana) are its related species. However, evolutionary history of the Pueraria genus is still largely unknown. Here, a high-integrity, chromosome-level genome of P. lobata and an improved genome of P. thomsonii were reported. It found evidence for an ancient whole-genome triplication and a recent whole-genome duplication shared with Fabaceae in three Pueraria species. Population genomics of 121 Pueraria accessions demonstrated that P. lobata populations had substantially higher genetic diversity, and P. thomsonii was probably derived from P. lobata by domestication as a subspecies. Selection sweep analysis identified candidate genes in P. thomsonii populations associated with the synthesis of auxin and gibberellin, which potentially play a role in the expansion and starch accumulation of tubers in P. thomsonii. Overall, the findings provide new insights into the evolutionary and domestication history of the Pueraria genome and offer a valuable genomic resource for the genetic improvement of these species.


Subject(s)
Genetic Variation , Genome, Plant , Pueraria , Pueraria/genetics , Phylogeny , Evolution, Molecular
12.
Int J Chron Obstruct Pulmon Dis ; 19: 1093-1103, 2024.
Article in English | MEDLINE | ID: mdl-38800522

ABSTRACT

Purpose: Whether Internet of Things (IoT)-based home respiratory muscle training (RMT) benefits patients with comorbid chronic obstructive pulmonary disease (COPD) remains unclear. Therefore, this study aims to evaluate the effectiveness of IoT-based home RMT for patients with COPD. Patients and Methods: Seventy-eight patients with stable COPD were randomly divided into two groups. The control group received routine health education, while the intervention group received IoT-based home RMT (30 inspiratory muscle training [IMT] and 30 expiratory muscle training [EMT] in different respiratory cycles twice daily for 12 consecutive weeks). Assessments took place pre-intervention and 12 weeks post-intervention, including lung function tests, respiratory muscle strength tests, the mMRC dyspnea scale, CAT questionnaires, the HAMA scale, and 6-month COPD-related readmission after intervention. Results: Seventy-four patients with COPD were analyzed (intervention group = 38, control group = 36), and the mean age and FEV1 of the patients were 68.65 ± 7.40 years, 1.21 ± 0.54 L. Compared to those of the control population, the intervention group exhibited higher FEV1/FVC (48.23 ± 10.97 vs 54.32 ± 10.31, p = 0.016), MIP (41.72 ± 7.70 vs 47.82 ± 10.99, p = 0.008), and MEP (42.94 ± 7.85 vs 50.29 ± 15.74, p = 0.013); lower mMRC (2.00 [2.00-3.00] vs 1.50 [1.00-2.00], p < 0.001), CAT (17.00 [12.00-21.75] vs 11.00 [9.00-13.25], p < 0.001), and HAMA (7.00 [5.00-9.00] vs 2.00 [1.00-3.00], p < 0.001) scores; and a lower incidence rate of 6-month readmission (22% vs 5%, p = 0.033). Conclusion: Compared with no intervention, IoT-based home RMT may be a more beneficial intervention for patients with COPD.


Subject(s)
Breathing Exercises , Lung , Pulmonary Disease, Chronic Obstructive , Recovery of Function , Respiratory Muscles , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Male , Female , Aged , Breathing Exercises/methods , Middle Aged , Treatment Outcome , Lung/physiopathology , Time Factors , Respiratory Muscles/physiopathology , Forced Expiratory Volume , Exercise Tolerance , Muscle Strength , Home Care Services , Patient Readmission , Patient Education as Topic/methods , Internet-Based Intervention , Vital Capacity
13.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791115

ABSTRACT

Surface chemistry and bulk structure jointly play crucial roles in achieving high-performance supercapacitors. Here, the synergistic effect of surface chemistry properties (vacancy and phosphorization) and structure-derived properties (hollow hydrangea-like structure) on energy storage is explored by the surface treatment and architecture design of the nanostructures. The theoretical calculations and experiments prove that surface chemistry modulation is capable of improving electronic conductivity and electrolyte wettability. The structural engineering of both hollow and nanosheets produces a high specific surface area and an abundant pore structure, which is favorable in exposing more active sites and shortens the ion diffusion distance. Benefiting from its admirable physicochemical properties, the surface phosphorylated MnCo2O4.5 hollow hydrangea-like structure (P-MnCoO) delivers a high capacitance of 425 F g-1 at 1 A g-1, a superior capability rate of 63.9%, capacitance retention at 10 A g-1, and extremely long cyclic stability (91.1% after 10,000 cycles). The fabricated P-MnCoO/AC asymmetric supercapacitor achieved superior energy and power density. This work opens a new avenue to further improve the electrochemical performance of metal oxides for supercapacitors.


Subject(s)
Electric Capacitance , Manganese Compounds , Oxides , Oxygen , Manganese Compounds/chemistry , Oxides/chemistry , Oxygen/chemistry , Surface Properties , Nanostructures/chemistry , Electrochemical Techniques/methods
14.
Inflammation ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700791

ABSTRACT

Periodontitis, characterized by progressive alveolar bone destruction, leads to the loss of attachment and stability of the affected teeth. Macrophages, especially the proinflammatory M1 subtype, are key in periodontitis pathogenesis, driving the disease's inflammatory and destructive processes. Despite existing insight into their involvement, comprehensive understanding of the underlying molecular mechanisms remains limited. TRPV1 is a non-selective cation channel protein and is known to regulate cellular function and homeostasis in macrophages. Our research objective was to investigate the impact of TRPV1 on the proinflammatory attributes of M1 macrophages in periodontal tissues, exploring potential mechanistic pathways. A mouse model of periodontitis was established using Porphyromonas gingivalis inoculation and ligature application around the maxillary second molar. Immunohistological analysis showed a significant reduction in macrophage TRPV1 expression in periodontitis-induced mice. Treatment with capsaicin, a TRPV1 agonist, was observed to effectively elevate TRPV1 expression in these macrophages. Furthermore, micro-computed tomography analysis revealed a marked decrease in alveolar bone resorption in the capsaicin -treated group, compared with vehicle and healthy control groups. Our in vitro findings show that capsaicin treatment successfully attenuated LPS-induced TNF-α and IL-6 production in macrophages, mediated through NRF2 activation, consequently reducing intracellular ROS levels. These findings suggest that TRPV1 agonists, through modulating M1 macrophage activity and up-regulating TRPV1, could be a novel therapeutic approach in periodontal disease management.

15.
Front Psychiatry ; 15: 1339558, 2024.
Article in English | MEDLINE | ID: mdl-38721616

ABSTRACT

Introduction: Patients with alcohol use disorder (AUD) often experience repeated withdrawal. Impulsivity is the most relevant factor influencing successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the differential effects of BDNF or FGF21 on impulsivity have focused on single-gene effects and have inconsistent results. We aim to investigate the effects of BDNF rs6265 and FGF21 rs11665896, individually and together, on impulsivity during alcohol withdrawal in patients with AUD. Methods: We recruited 482 adult Han Chinese males with AUD and assessed their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted and genotyped from peripheral blood samples. Statistical analysis was conducted on the data. Results: The T-test and 2 × 2 analysis of variance were used to investigate the effects of the genes on impulsivity. There was a significant BDNF × FGF21 interaction on no-planning impulsiveness (F = 9.15, p = 0.003, η2p = 0.03). Simple main effects analyses and planned comparisons showed that BDNF rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-planning impulsiveness. Finally, hierarchical regression analyses revealed that only the interaction of BDNF and FGF21 accounted for a significant portion of the variance in no-planning impulsiveness. Conclusion and significance: The combination of BDNF rs6265 A allele and FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol withdrawal. Our study provides a possible genetic explanation for the effects of associated impulsivity in patients with AUD from the perspective of gene-gene interactions.

16.
Physiol Plant ; 176(3): e14331, 2024.
Article in English | MEDLINE | ID: mdl-38710477

ABSTRACT

Sporopollenin, as the main component of the pollen exine, is a highly resistant polymer that provides structural integrity under unfavourable environmental conditions. Tetraketone α-pyrone reductase 1 (TKPR1) is essential for sporopollenin formation, catalyzing the reduction of tetraketone carbonyl to hydroxylated α-pyrone. The functional role of TKPR1 in male sterility has been reported in flowering plants such as maize, rice, and Arabidopsis. However, the molecular cloning and functional characterization of TKPR1 in cotton remain unaddressed. In this study, we identified 68 TKPR1s from four cotton species, categorized into three clades. Transcriptomics and RT-qPCR demonstrated that GhTKPR1_8 exhibited typical expression patterns in the tetrad stage of the anther. GhTKPR1_8 was localized to the endoplasmic reticulum. Moreover, ABORTED MICROSPORES (GhAMS) transcriptionally activated GhTKPR1_8 as indicated by luciferase complementation tests. GhTKPR1_8-knockdown inhibited anther dehiscence and reduced pollen viability in cotton. Additionally, overexpression of GhTKPR1_8 in the attkpr1 mutant restored its male sterile phenotype. This study offers novel insights into the investigation of TKPR1 in cotton while providing genetic resources for studying male sterility.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Pollen , Pollen/genetics , Pollen/physiology , Gossypium/genetics , Gossypium/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/physiology , Plant Infertility/genetics , Phylogeny
17.
Cell Biochem Funct ; 42(4): e4056, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812104

ABSTRACT

Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.


Subject(s)
Mitochondria , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Humans , Mitochondria/metabolism , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Animals , Apoptosis , Central Nervous System/metabolism , Central Nervous System/pathology , Central Nervous System/injuries
18.
Cell Stem Cell ; 31(5): 583-585, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701751

ABSTRACT

How nuclear RNA homeostasis impacts cellular functions remains elusive. In this issue of Cell Stem Cell, Han et al.1 utilized a controllable protein degradation system targeting EXOSC2 to perturb RNA homeostasis in mouse pluripotent embryonic stem cells, revealing its vital role in orchestrating crucial nuclear events for cellular fitness.


Subject(s)
Homeostasis , RNA, Nuclear , Animals , Mice , RNA, Nuclear/metabolism , RNA, Nuclear/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Cell Nucleus/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
19.
Adv Healthc Mater ; : e2304300, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589053

ABSTRACT

Spinal cord injury (SCI) often leads to a severe permanent disability. A poor inflammatory microenvironment and nerve electric signal conduction block are the main reasons for difficulty in spinal cord nerve regeneration. In this study, black phosphorus (BP) and glycyrrhizic acid (GA) are integrated into methacrylate-modified silk fibroin (SF) to construct a bifunctional injectable hydrogel (SF/BP/GA) with appropriate conductivity and the ability to inhibit inflammation to promote neuronal regeneration after SCI. This work discovers that the SF/BP/GA hydrogel can reduce the oxidative damage mediated by oxygen free radicals, promote the polarization of macrophages toward the anti-inflammatory M2 phenotype, reduce the expression of inflammatory factors, and improve the inflammatory microenvironment. Moreover, it induces neural stem cell (NSC) differentiation and neurosphere formation, restores signal conduction at the SCI site in vivo, and ameliorates motor function in mice with spinal cord hemisection, revealing a significant neural repair effect. An injectable, electroconductive, free-radical-scavenging hydrogel is a promising therapeutic strategy for SCI repair.

20.
Front Pediatr ; 12: 1344710, 2024.
Article in English | MEDLINE | ID: mdl-38616816

ABSTRACT

Objective: This study aims to investigate whether tracheal extubation at different depths of anesthesia using Narcotrend EEG (NT value) can influence the recovery quality from anesthesia and cognitive function of children who underwent tonsillotomy. Methods: The study enrolled 152 children who underwent tonsillotomy and were anesthetized with endotracheal intubation in our hospital from September 2019 to March 2022. These patients were divided into Group A (conscious group, NT range of 95-100), Group B (light sedation group, NT range of 80-94), and Group C (conventional sedation group, NT range of 65-79). A neonatal pain assessment tool, namely, face, legs, activity, cry, and consolability (FLACC), was used to compare the pain scores of the three groups as the primary end point. The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scales were used to evaluate the cognitive function of children in the three groups before and after surgery as the secondary end points. Results: Differences were observed in the awakening time and FLACC scores after awakening among the three groups (P < 0.05). Among them, Group A exhibited a significantly shorter awakening time and higher FLACC score after awakening than those in Groups B and C (both P < 0.05). The total incidence of adverse reactions in Group B was significantly lower than that in Groups A and C (P < 0.05). No significant difference was observed in MMSE and MoCA scores before the operation and at 7 days after the operation among the three groups (P > 0.05), but a significant difference was found in MMSE and MoCA scores at 1 day and 3 days after the operation among the three groups (P < 0.05). In addition, MMSE and MoCA scores of the three groups decreased significantly at 1 day and 3 days after the operation than those at 1 day before the operation (P < 0.05). Conclusion: When the NT value of tonsillectomy is between 80 and 94, tracheal catheter removal can effectively improve the recovery quality and postoperative cognitive dysfunction of children.

SELECTION OF CITATIONS
SEARCH DETAIL
...