Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 688
Filter
2.
J Food Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004871

ABSTRACT

Insoluble dietary fiber (IDF) in soybean meal, due to the insolubility, is one of the major impediments to upcycle the soybean meal for its value-added use. This study converted IDF to soluble dietary fiber (SDF) using ball milling and enzymatic hydrolysis of the IDF. The impact of ball milling and enzymatic hydrolysis on the physicochemical and functional properties of SDF was evaluated. Cellulase, hemicellulase, xylanase, galacturonase, and arabinofuranosidase were employed for hydrolyzing IDF. The results showed that ball milling significantly reduced the particle size of IDF, facilitating enhanced enzymatic hydrolysis and resulting in SDF with lower molecular weight and varied monosaccharide composition. The synergistic effect of ball milling and enzymatic processes with combination of cellulase-xylanase-galacturonase was evident by the improved conversion rates (69.8%) and altered weight-averaged molecular weight (<5900 Da) of the resulting SDF. Rheological and microstructural analyses of the SDF gel indicated that specific enzyme combinations led to SDF gels with distinct viscoelastic properties, pore sizes, and functional capabilities, suitable for varied applications in the food and pharmaceutical sectors. This comprehensive evaluation demonstrates the potential of optimized physical bioprocessing techniques in developing functional ingredients with tailored properties for industrial use.

3.
Commun Biol ; 7(1): 860, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003419

ABSTRACT

Alternative polyadenylation (APA) plays a crucial role in cancer biology. Here, we used data from the 3'aQTL-atlas, GTEx, and the China Nanjing Lung Cancer GWAS database to explore the association between apaQTL/eQTL-SNPs and the risk of lung adenocarcinoma (LUAD). The variant T allele of rs277646 in NIT2 is associated with an increased risk of LUAD (OR = 1.12, P = 0.015), lower PDUI values, and higher NIT2 expression. The 3'RACE experiment showed multiple poly (A) sites in NIT2, with the rs277646-T allele causing preferential use of the proximal poly (A) site, resulting in a shorter 3'UTR transcript. This leads to the loss of the hsa-miR-650 binding site, thereby affecting LUAD malignant phenotypes by regulating the expression level of NIT2. Our findings may provide new insights into understanding and exploring APA events in LUAD carcinogenesis.


Subject(s)
Adenocarcinoma of Lung , Genetic Predisposition to Disease , Lung Neoplasms , Quantitative Trait Loci , Humans , Adenocarcinoma of Lung/genetics , China/epidemiology , East Asian People/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Lung Neoplasms/genetics , Polyadenylation , Polymorphism, Single Nucleotide
4.
Molecules ; 29(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999102

ABSTRACT

Activated carbon has an excellent porous structure and is considered a promising adsorbent and electrode material. In this study, activated carbon fibers (ACFs) with abundant microporous structures, derived from natural cotton fibers, were successfully synthesized at a certain temperature in an Ar atmosphere and then activated with KOH. The obtained ACFs were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental analysis, nitrogen and carbon dioxide adsorption-desorption analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption measurement. The obtained ACFs showed high porous qualities and had a surface area from 673 to 1597 m2/g and a pore volume from 0.33 to 0.79 cm3/g. The CO2 capture capacities of prepared ACFs were measured and the maximum capture capacity for CO2 up to 6.9 mmol/g or 4.6 mmol/g could be achieved at 0 °C or 25 °C and 1 standard atmospheric pressure (1 atm). Furthermore, the electrochemical capacitive properties of as-prepared ACFs in KOH aqueous electrolyte were also studied. It is important to note that the pore volume of the pores below 0.90 nm plays key roles to determine both the CO2 capture ability and the electrochemical capacitance. This study provides guidance for designing porous carbon materials with high CO2 capture capacity or excellent capacitance performance.

5.
J Proteomics ; 305: 105247, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950696

ABSTRACT

The aim of this study was to explore potential novel plasma protein biomarkers for lung adenocarcinoma (LUAD). A plasma proteomics analysis was carried out and candidate protein biomarkers were validated in 102 LUAD cases and 102 matched healthy controls. The same LUAD tumor tissues were detected to explore the correlation between the expression of candidate proteins in tissues and plasma and vascular normalization. A LUAD active metastasis mice model was constructed to explore the role of candidate proteins for lung metastasis. GPI and PGD were verified to be upregulated in plasma from LUAD patients, and the expression of GPI in tumor tissue was positively correlated with the expression of GPI in plasma and negatively correlated with the normalization of tumor blood vessels. Meanwhile, a negative correlation between the expression of GPI and PGD in plasma and tumor vascular normalization was discovered. In the LUAD active metastasis model, the lowest levels of vascular normalization and the highest expression of GPI and PGD were found in mice with lung metastases. This study found that GPI and PGD may be potential plasma biomarkers for LUAD, and monitoring those may infer the risk of metastasis and malignancy of the tumor. SIGNIFICANT: We identified GPI and PGD as potential novel diagnostic and prognostic biomarkers for LUAD. PGD and GPI can be used as diagnostic biomarkers in combination with other available strategies to assist in the screening and diagnosis of LUAD, and as prognostic biomarkers aid in predict the risk of tumor metastasis and malignancy in patients with LUAD.

6.
J Sci Food Agric ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963133

ABSTRACT

BACKGROUND: Yeast culture (YC) is a product fermented on a specific medium, which is a type of postbiotic of anaerobic solid-state fermentation. Although YC has positive effects on the animal growth and health, it contains a variety of beneficial metabolites as dark matter, which have not been quantified. In the present study, liquid chromatography-tandem mass spectrometry is employed to identify the unknown metabolites. Following their identification, the important chemicals are quantified using HPLC-diode array detection methods. RESULTS: Non-targeted metabolomics studies showed that 670 metabolites in total were identified in YC, of which 23 metabolites significantly increased, including organic acids, amino acids, nucleosides and purines, isoflavones, and other substances. The chemical quantitative analysis showed that the contents of succinic acid, aminobutyric acid, glutamine, purine and daidzein increased by 84.42%, 51.07%, 100%, 68.85% and 4.60%, respectively. CONCLUSION: Therefore, the use of non-targeted metabolomics combined with chemical quantitative analysis to reveal the nutritional and functional substances of YC could help to elucidate the postbiotic mechanism and provide theoretical support for the regulation of the directional accumulation of beneficial metabolites. © 2024 Society of Chemical Industry.

7.
BMC Complement Med Ther ; 24(1): 263, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992647

ABSTRACT

Lung cancer is a malignant tumor with highly heterogeneous characteristics. A classic Chinese medicine, Pinellia ternata (PT), was shown to exert therapeutic effects on lung cancer cells. However, its chemical and pharmacological profiles are not yet understood. In the present study, we aimed to reveal the mechanism of PT in treating lung cancer cells through metabolomics and network pharmacology. Metabolomic analysis of two strains of lung cancer cells treated with Pinellia ternata extracts (PTE) was used to identify differentially abundant metabolites, and the metabolic pathways associated with the DEGs were identified by MetaboAnalyst. Then, network pharmacology was applied to identify potential targets against PTE-induced lung cancer cells. The integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. PTE obviously inhibited the proliferation, migration and invasion of A549 and NCI-H460 cells. The results of the cellular metabolomics analysis showed that 30 metabolites were differentially expressed in the lung cancer cells of the experimental and control groups. Through pathway enrichment analysis, 5 metabolites were found to be involved in purine metabolism, riboflavin metabolism and the pentose phosphate pathway, including D-ribose 5-phosphate, xanthosine, 5-amino-4-imidazolecarboxyamide, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Combined with network pharmacology, 11 bioactive compounds were found in PT, and networks of bioactive compound-target gene-metabolic enzyme-metabolite interactions were constructed. In conclusion, this study revealed the complicated mechanisms of PT against lung cancer. Our work provides a novel paradigm for identifying the potential mechanisms underlying the pharmacological effects of natural compounds.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metabolomics , Network Pharmacology , Pinellia , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Cell Line, Tumor , Plant Extracts/pharmacology , A549 Cells , Drugs, Chinese Herbal/pharmacology , Cell Proliferation/drug effects
8.
Gynecol Endocrinol ; 40(1): 2375564, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38976721

ABSTRACT

OBJECTIVE: To comprehensively assess the dose-response association between dietary glycemic index (GI) and glycemic load (GL) and gestational diabetes mellitus (GDM) risk. METHODS: PubMed, Embase, Cochrane Library, Web of Science, CNKI, WanFang, and VIP databases were searched up to May 29, 2024. Studies with at least three exposure categories were included. Dose-response analysis was also performed when covariates were adjusted in the included studies. RESULTS: Thirteen studies involving 39,720 pregnant women were included. A linear relationship was found between GI and the risk of GDM (χ2 = 4.77, Pnon-linearity = .0923). However, association was not significant (χ2 = 0.06, p = .8000). For every unit increase in GI (range 0-30), GDM risk increased by 0.29%. After adjusting for covariates, the linear relationship persisted (χ2 = 4.95, Pnon-linearity = .084) with no significant association (χ2 = 0.08, p = .7775). For GL, a linear relationship was also found (χ2 = 4.17, Pnon-linearity =.1245), but GL was not significantly associated with GDM risk (χ2 = 2.63, p = .1049). The risk of GDM increased by 0.63% per unit increase in GL. After covariate adjustment, a significant association was observed (χ2 = 6.28, p = .0122). CONCLUSION: No significant association between GI and GDM risk was found. After adjusting for covariates, GL shows a significant association with GDM risk. Our findings emphasize the importance of considering dietary GL in managing the risk of GDM. Future research should continue to explore these relationships with standardized diagnostic criteria and robust adjustment for potential confounders.


Subject(s)
Diabetes, Gestational , Diet , Glycemic Index , Glycemic Load , Humans , Diabetes, Gestational/epidemiology , Pregnancy , Female , Diet/adverse effects , Risk Factors
9.
Thromb J ; 22(1): 49, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863024

ABSTRACT

BACKGROUND: Pulmonary embolism (PE) is a life-threatening thromboembolic disease for which there is limited evidence for effective prevention and treatment. Our goal was to determine whether genetically predicted circulating blood cell traits could influence the incidence of PE. METHODS: Using single variable Mendelian randomization (SVMR) and multivariate Mendelian randomization (MVMR) analyses, we identified genetic associations between circulating blood cell counts and lymphocyte subsets and PE. GWAS blood cell characterization summary statistics were compiled from the Blood Cell Consortium. The lymphocyte subpopulation counts were extracted from summary GWAS statistics for samples from 3757 individuals that had been analyzed by flow cytometry. GWAS data related to PE were obtained from the FinnGen study. RESULTS: According to the SVMR and reverse MR, increased levels of circulating white blood cells (odds ratio [OR]: 0.88, 95% confidence interval [CI]: 0.81-0.95, p = 0.0079), lymphocytes (OR: 0.90, 95% CI: 0.84-0.97, p = 0.0115), and neutrophils (OR: 0.88, 95% CI: 0.81-0.96, p = 0.0108) were causally associated with PE susceptibility. MVMR analysis revealed that lower circulating lymphocyte counts (OR: 0.84, 95% CI: 0.75-0.94, p = 0.0139) were an independent predictor of PE. According to further MR results, this association may be primarily related to HLA-DR+ natural killer (NK) cells. CONCLUSIONS: Among European populations, there is a causal association between genetically predicted low circulating lymphocyte counts, particularly low HLA-DR+ NK cells, and an increased risk of PE. This finding supports observational studies that link peripheral blood cells to PE and provides recommendations for predicting and preventing this condition.

10.
Cell Commun Signal ; 22(1): 302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831335

ABSTRACT

The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-ß domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.


Subject(s)
Disease Progression , Esophageal Neoplasms , Integrin beta4 , Nedd4 Ubiquitin Protein Ligases , Proteolysis , Ubiquitination , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Humans , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Animals , Cell Line, Tumor , Integrin beta4/metabolism , Integrin beta4/genetics , Mice, Nude , Mice , Cell Proliferation , Male , Gene Expression Regulation, Neoplastic , Female
11.
PLoS One ; 19(6): e0306294, 2024.
Article in English | MEDLINE | ID: mdl-38935787

ABSTRACT

Recycling of used products can provide substantial economic and environmental benefits for supply chain players. However, many factors associated with the design of closed-loop supply chain networks are uncertain in their nature, including demand, opening cost of facilities, capacity of opened facilities, transportation cost, and procurement cost. Therefore, this study proposes a novel fuzzy programming model for closed-loop supply chain network design, which directly relies on the fuzzy ranking method based on a credibility measure. The objective of the presented optimization model aims at minimizing the total cost of the network when selecting the facility locations and transportation routes between the nodes of the network. Based on the problem characteristics, a Migratory Birds Optimization Algorithm with a new product source encoding scheme is developed as a solution approach. The inspiration for the product source coding method originates from the label information of raw material supplier and manufacturing factories on product packaging, as well as the information of each logistics node on the delivery order. This novel encoding method aims to address the limitations of four traditional encoding methods: Prüfer number based encoding, spanning tree based encoding, forest data structure based encoding, and priority based encoding, thereby increasing the likelihood of heuristic algorithms finding the optimal solution. Thirty-five illustrative examples are developed to evaluate the proposed algorithm against the exact optimization method (LINGO) and a Genetic Algorithm, Ant Colony Optimization, Simulated Annealing, which are recognized as well-known metaheuristic algorithms. The results from extensive experiments show that the proposed algorithm is able to provide optimal and good-quality solutions within acceptable computational time even for large-scale numerical examples. The suitability of the model is confirmed through a meticulous sensitivity analysis. This analysis involves adjusting the confidence level incrementally from 50% to 100%, in 5% intervals, with respect to the model's uncertain parameters. Consequently, it yields valuable managerial insights. The outcomes of this research are expected to provide scientific support for related supply chain enterprises and stakeholders.


Subject(s)
Algorithms , Birds , Fuzzy Logic , Animals , Animal Migration , Recycling/methods , Models, Theoretical
12.
Acta Diabetol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896283

ABSTRACT

BACKGROUND: Diabetic Kidney Disease (DKD) is a complex disease associated with circadian rhythm and biological clock regulation disorders. Melatonin (MT) is considered a hormone with renal protective effects, but its mechanism of action in DKD is unclear. METHODS: We used the GSE151325 dataset from the GEO database for differential gene analysis and further explored related genes and pathways through GO and KEGG analysis and PPI network analysis. Additionally, this study used a type 2 diabetes db/db mouse model and investigated the role of melatonin in DKD and its relationship with clock genes through immunohistochemistry, Western blot, real-time PCR, ELISA, chromatin immunoprecipitation (ChIP), dual-luciferase reporter technology, and liposome transfection technology to study DEC1 siRNA. RESULTS: Bioinformatics analysis revealed the central position of clock genes such as CLOCK, DEC1, Bhlhe41, CRY1, and RORB in DKD. Their interaction with key inflammatory regulators may reveal melatonin's potential mechanism in treating diabetic kidney disease. Further experimental results showed that melatonin significantly improved the renal pathological changes in db/db mice, reduced body weight and blood sugar, regulated clock genes in renal tissue, and downregulated the TLR2/MyD88/NF-κB signaling pathway. We found that the transcription factor DEC1 can bind to the TLR2 promoter and activate its transcription, while CLOCK's effect is unclear. Liposome transfection experiments further confirmed the effect of DEC1 on the TLR2/MyD88/NF-κB signaling pathway. CONCLUSION: Melatonin shows significant renal protective effects by regulating clock genes and downregulating the TLR2/MyD88/NF-κB signaling pathway. The transcription factor DEC1 may become a key regulatory factor for renal inflammation and fibrosis by activating TLR2 promoter transcription. These findings provide new perspectives and directions for the potential application of melatonin in DKD treatment.

13.
Genome Biol ; 25(1): 117, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38715110

ABSTRACT

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Subject(s)
Pre-Eclampsia , Trophoblasts , Vascular Remodeling , Pre-Eclampsia/genetics , Pregnancy , Female , Humans , Trophoblasts/metabolism , Vascular Remodeling/genetics , Placenta/metabolism , DNA Methylation , Epigenesis, Genetic , Endothelial Cells/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Imprinting , Transforming Growth Factor beta/metabolism , Fetal Growth Retardation/genetics , Placentation/genetics , RNA-Binding Proteins , Apoptosis Regulatory Proteins
14.
Trials ; 25(1): 306, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715042

ABSTRACT

BACKGROUND: Premature infants commonly encounter difficulties with oral feeding, a complication that extends hospital stays, affects infants' quality of life, and imposes substantial burdens on families and society. Enhancing preterm infants' oral feeding skills and facilitating their transition from parenteral or nasal feeding to full oral feeding pose challenges for neonatal intensive care unit (NICU) healthcare professionals. Research indicates that oral motor interventions (OMIs) can enhance preterm infants' oral feeding capabilities and expedite the transition from feeding initiation to full oral feeding. Nonetheless, the most suitable timing for commencing these interventions remains uncertain. METHODS: This is a single-blind, randomized controlled trial. Preterm with a gestational age between 29+0 to 34+6 weeks will be eligible for the study. These infants will be randomized and allocated to one of two groups, both of which will receive the OMIs. The intervention commences once the infant begins milk intake during the early OMIs. Additionally, in the late OMIs group, the intervention will initiate 48 h after discontinuing nasal continuous positive airway pressure. DISCUSSION: OMIs encompass non-nutritive sucking and artificial oral stimulation techniques. These techniques target the lips, jaw, muscles, or tongue of premature infants, aiming to facilitate the shift from tube feeding to oral feeding. The primary objective is to determine the ideal intervention timing that fosters the development of oral feeding skills and ensures a seamless transition from parenteral or nasal feeding to full oral feeding among preterm infants. Furthermore, this study might yield insights into the long-term effects of OMIs on the growth and neurodevelopmental outcomes of preterm infants. Such insights could bear substantial significance for the quality of survival among preterm infants and the societal burden imposed by preterm birth. TRIAL REGISTRATION: chictr.org.cn ChiCTR2300076721. Registered on October 17, 2023.


Subject(s)
Infant, Premature , Randomized Controlled Trials as Topic , Sucking Behavior , Humans , Infant, Newborn , Single-Blind Method , Time Factors , Gestational Age , Treatment Outcome , Intensive Care Units, Neonatal , Feeding Behavior , Female , Child Development
15.
Immune Netw ; 24(2): e3, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38725674

ABSTRACT

Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1ß (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

16.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Article in English | MEDLINE | ID: mdl-38747174

ABSTRACT

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Subject(s)
Phosphorus , Plant Roots , Silicates , Soil Microbiology , Soil , Phosphorus/metabolism , Soil/chemistry , Plant Roots/metabolism , Plant Roots/growth & development , Silicates/metabolism , Mycorrhizae/physiology , Calcium Compounds , Carbon/metabolism
17.
Infect Drug Resist ; 17: 2031-2041, 2024.
Article in English | MEDLINE | ID: mdl-38803520

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a predominant nosocomial infection-causing bacteria. The aim of this study was to develop a novel single-bacteria multiplex digital PCR assays (SMD-PCR), which is capable of simultaneously detecting and discriminating Methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA. This protocol employed TaqMan probes to detect SAOUHSC_00106 and mecA genes, with the latter being linked to methicillin resistance. A total of 72 samples from various specimen types were evaluated. The accuracy rates for the sputum samples, pus samples, swab samples, ear secretion samples, and catheter samples were 94.44%, 100%, 92%, 100%, and 100%, respectively. Our results showed that the clinical practicability of SMD-PCR has applicability to the rapid detection of MRSA without DNA extraction or bacterial culture, and can be utilized for the rapid detection of Staphylococcus aureus and the timely identification of MRSA in clinical samples, thereby providing an advanced platform for the rapid diagnosis of clinical MRSA infection.

18.
Arch Toxicol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811393

ABSTRACT

Assessing the association between candidate single-nucleotide polymorphisms (SNPs) identified by multi-omics approaches and susceptibility to silicosis. RNA-seq analysis was performed to screen the differentially expressed mRNAs in the fibrotic lung tissues of mice exposed to silica particles. Following this, we integrated the SNPs located in the above human homologenes with the silicosis-related genome-wide association study (GWAS) data to select the candidate SNPs. Then, expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database. Next, we validated the associations between the functional eQTL-SNPs and silicosis susceptibility by additional case-control study. And the contribution of the identified SNP and its host gene in the fibrosis process was further validated by functional experiments. A total of 12 eQTL-SNPs were identified in the screening stage. The results of the validation stage suggested that the variant T allele of rs419540 located in IL12RB1 significantly increased the risk of developing silicosis [additive model: odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.11-2.85, P = 0.017]. Furthermore, the combination of GWAS and the results of validation stage also indicated that the variant T allele of rs419540 in IL12RB1 was associated with increased silicosis risk (additive model: OR = 2.07, 95% CI 1.38-3.12, P < 0.001). Additionally, after knockdown or overexpression of IL12RB1, the levels of pro-inflammatory factors, such as IL-12, IFN-γ, and other pro-inflammatory factors, were correspondingly decreased or increased. The novel eQTL-SNP, rs419540, might increase the risk of silicosis by modulating the expression levels of IL12RB1.

19.
Int J Chron Obstruct Pulmon Dis ; 19: 1093-1103, 2024.
Article in English | MEDLINE | ID: mdl-38800522

ABSTRACT

Purpose: Whether Internet of Things (IoT)-based home respiratory muscle training (RMT) benefits patients with comorbid chronic obstructive pulmonary disease (COPD) remains unclear. Therefore, this study aims to evaluate the effectiveness of IoT-based home RMT for patients with COPD. Patients and Methods: Seventy-eight patients with stable COPD were randomly divided into two groups. The control group received routine health education, while the intervention group received IoT-based home RMT (30 inspiratory muscle training [IMT] and 30 expiratory muscle training [EMT] in different respiratory cycles twice daily for 12 consecutive weeks). Assessments took place pre-intervention and 12 weeks post-intervention, including lung function tests, respiratory muscle strength tests, the mMRC dyspnea scale, CAT questionnaires, the HAMA scale, and 6-month COPD-related readmission after intervention. Results: Seventy-four patients with COPD were analyzed (intervention group = 38, control group = 36), and the mean age and FEV1 of the patients were 68.65 ± 7.40 years, 1.21 ± 0.54 L. Compared to those of the control population, the intervention group exhibited higher FEV1/FVC (48.23 ± 10.97 vs 54.32 ± 10.31, p = 0.016), MIP (41.72 ± 7.70 vs 47.82 ± 10.99, p = 0.008), and MEP (42.94 ± 7.85 vs 50.29 ± 15.74, p = 0.013); lower mMRC (2.00 [2.00-3.00] vs 1.50 [1.00-2.00], p < 0.001), CAT (17.00 [12.00-21.75] vs 11.00 [9.00-13.25], p < 0.001), and HAMA (7.00 [5.00-9.00] vs 2.00 [1.00-3.00], p < 0.001) scores; and a lower incidence rate of 6-month readmission (22% vs 5%, p = 0.033). Conclusion: Compared with no intervention, IoT-based home RMT may be a more beneficial intervention for patients with COPD.


Subject(s)
Breathing Exercises , Lung , Pulmonary Disease, Chronic Obstructive , Recovery of Function , Respiratory Muscles , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Male , Female , Aged , Breathing Exercises/methods , Middle Aged , Treatment Outcome , Lung/physiopathology , Time Factors , Respiratory Muscles/physiopathology , Forced Expiratory Volume , Exercise Tolerance , Muscle Strength , Home Care Services , Patient Readmission , Patient Education as Topic/methods , Internet-Based Intervention , Vital Capacity
20.
BMC Pulm Med ; 24(1): 225, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724980

ABSTRACT

OBJECTIVE: To explore the potential association between dietary live microbes and the prevalence of Chronic Obstructive Pulmonary Diseases (COPD). METHODS: In this cross-sectional study, data of 9791 participants aged 20 years or older in this study were collected from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2018. Participants in this study were classified into three groups according to the Sanders' dietary live microbe classification system: low, medium, and high dietary live microbe groups. COPD was defined by a combination of self-reported physician diagnoses and standardized medical status questionnaires. Logistic regression and subgroup analysis were used to assess whether dietary live microbes were associated with the risk of COPD. RESULTS: Through full adjustment for confounders, participants in the high dietary live microbe group had a low prevalence of COPD in contrast to those in low dietary live microbe group (OR: 0.614, 95% CI: 0.474-0.795, and p < 0.001), but no significant association with COPD was detected in the medium and the low dietary live microbe groups. This inverse relationship between dietary live microbe intake and COPD prevalence was more inclined to occur in smokers, females, participants aged from 40 to 59 years old and non-obese participants. CONCLUSION: A high dietary live microbe intake was associated with a low prevalence of COPD, and this negative correlation was detected especially in smokers, females, participants aged from 40 to 59 years old and non-obese participants.


Subject(s)
Nutrition Surveys , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Cross-Sectional Studies , Female , Male , Middle Aged , Adult , Prevalence , Diet/statistics & numerical data , Aged , Logistic Models , United States/epidemiology , Risk Factors , Young Adult , Smoking/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...