Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 990
Filter
1.
ACS Med Chem Lett ; 15(7): 1102-1108, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39015265

ABSTRACT

α-Galactosylceramide (KRN7000 or α-GalCer) analogues terminated with phenyl (Ph) groups at the acyl moiety possess more potency than KRN7000 to activate invariant natural killer T (iNKT) cells for inducing a T helper 1 (Th1)-biased immune response. However, biological activities of phenyl glycolipids with thio-modifications at the acyl moiety remain unknown, and facile approaches for highly stereoselective synthesis of KRN7000 and its analogues are rather scarce. Herein, we exploited 4,6-di-O-tert-butylsilylene (DTBS)-directed stereospecific galactosylation to efficiently synthesize various α-GalCer analogues bearing thioamide, terminal thiophenyl and dual modifications at the acyl moiety. Biological evaluations suggest that a new analogue S34 featuring a terminal Ph-S-Ph-F group exhibits a more superior Th1-biased immune response in mice. Molecular docking analysis revealed that the introduction of a sulfur atom influences vital hydrogen bonding interactions between glycolipids and the cluster of differentiation 1d (CDld), thus adjusting the stability of the glycolipid-CDld complex.

2.
Environ Monit Assess ; 196(7): 675, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951302

ABSTRACT

Vegetation is an important link between land, atmosphere, and water, making its changes of great significance. However, existing research has predominantly focused on long-term vegetation changes, neglecting the intra-annual variations of vegetation. Hence, this study is based on the Enhanced Vegetation Index (EVI) data from 2000 to 2022, with a time step of 16 days, to analyze the intra-annual patterns of vegetation changes in China. The average intra-annual EVI values for each municipal-level administrative region were calculated, and the time-series k-means clustering algorithm was employed to divide these regions, exploring the spatial variations in China's intra-annual vegetation changes. Finally, the ridge regression and random forest methods were utilized to assess the drivers of intra-annual vegetation changes. The results showed that: (1) China's vegetation status exhibits a notable intra-annual variation pattern of "high in summer and low in winter," and the changes are more pronounced in the northern regions than in the southern regions; (2) the intra-annual vegetation changes exhibit remarkable regional disparities, and China can be optimally clustered into four distinct clusters, which align well with China's temperature and precipitation zones; and (3) the intra-annual vegetation changes demonstrate significant correlations with meteorological factors such as dew point temperature, precipitation, maximum temperature, and sea-level pressure. In conclusion, our study reveals the characteristics, spatial patterns and driving forces of intra-annual vegetation changes in China, which contribute to explaining ecosystem response mechanisms, providing valuable insights for ecological research and the formulation of ecological conservation and management strategies.


Subject(s)
Environmental Monitoring , Remote Sensing Technology , China , Seasons , Plants , Cluster Analysis , Ecosystem
3.
Heliyon ; 10(12): e32609, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975192

ABSTRACT

Closed-loop neuromodulation with intelligence methods has shown great potentials in providing novel neuro-technology for treating neurological and psychiatric diseases. Development of brain-machine interactive neuromodulation strategies could lead to breakthroughs in precision and personalized electronic medicine. The neuromodulation research tool integrating artificial intelligent computing and performing neural sensing and stimulation in real-time could accelerate the development of closed-loop neuromodulation strategies and translational research into clinical application. In this study, we developed a brain-machine interactive neuromodulation research tool (BMINT), which has capabilities of neurophysiological signals sensing, computing with mainstream machine learning algorithms and delivering electrical stimulation pulse by pulse in real-time. The BMINT research tool achieved system time delay under 3 ms, and computing capabilities in feasible computation cost, efficient deployment of machine learning algorithms and acceleration process. Intelligent computing framework embedded in the BMINT enable real-time closed-loop neuromodulation developed with mainstream AI ecosystem resources. The BMINT could provide timely contribution to accelerate the translational research of intelligent neuromodulation by integrating neural sensing, edge AI computing and stimulation with AI ecosystems.

4.
Front Pharmacol ; 15: 1366070, 2024.
Article in English | MEDLINE | ID: mdl-38994203

ABSTRACT

Background: In recent years, severe pain after perianal surgery has seriously affected the prognosis of hospitalized patients. How to maximize the improvement of postoperative pain and perioperative comfort becomes particularly important. Methods: This study was a double-blind randomized controlled trial (Registration No.: ChiCTR2100048760, Registration Date: 16 July 2021, Link: www.chictr.org.cn/showproj.html?proj=130226), and patients were randomly divided into two groups: one group underwent postoperative 20 mL bilateral pudendal nerve block with 0.5% ropivacaine (P group), and the other group underwent postoperative 20 mL bilateral pudendal nerve block with 0.5% ropivacaine + 8 mg dexamethasone (PD group). The primary outcome was the incidence of moderate to severe pain at the first postoperative dressing change. Secondary outcomes included Quality of recovery-15 (QoR-15) score at 3 days after surgery, sleep quality, pain score at 3 days after surgery, and incidence of adverse events. Results: In the main outcome indicators, the incidence was 41.7% in the P group and 24.2% in the PD group (p = 0.01). The QoR-15 score and sleep quality in PD group were better than those in P group 2 days before surgery. The incidence of postoperative urinary retention was significantly decreased in PD group (p = 0.01). Conclusion: Local anesthesia with dexamethasone combined with pudendal nerve block after perianal surgery can reduce the incidence of moderate to severe pain during the first dressing change. This may be one of the approaches to multimodal analgesia after perianal surgery. Clinical Trial Registration: https://www.chictr.org.cn/, identifier ChiCTR2100048760.

5.
J Genet Genomics ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885836

ABSTRACT

Phospholipase D (PLD) lipid-signaling enzyme superfamily has been widely implicated in various human malignancies, but its role and underlying mechanism remain unclear in nasopharyngeal carcinoma (NPC). Here, we analyze the expressions of 6 PLD family members between 87 NPC and 10 control samples through transcriptome analysis. Our findings reveal a notable upregulation of PLD1 in both NPC tumors and cell lines, correlating with worse disease-free and overall survival in NPC patients. Functional assays further elucidate PLD1's oncogenic role, demonstrating its pivotal promotion of critical tumorigenic processes such as cell proliferation and migration in vitro, as well as tumor growth in vivo. Notably, our study uncovers a positive feedback loop between PLD1 and the NF-κB signaling pathway to render NPC progression. Specifically, PLD1 enhances NF-κB activity by facilitating the phosphorylation and nuclear translocation of RELA (p65), which in turn binds to the promoter of PLD1, augmenting its expression. Moreover, RELA overexpression significantly rescues the inhibitory effects in PLD1-depleted NPC cells. Importantly, the application of the PLD1 inhibitor, VU0155069, significantly inhibits NPC tumorigenesis in a patient-derived xenograft model. Together, our findings identify PLD1/NF-κB signaling as a positive feedback loop with promising therapeutic and prognostic potential in NPC.

6.
Chin Med ; 19(1): 83, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862981

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV)-induced lung inflammation is one of the main causes of hospitalization and easily causes disruption of intestinal homeostasis in infants, thereby resulting in a negative impact on their development. However, the current clinical drugs are not satisfactory. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM), has been used for clinical management of inflammatory diseases. However, its in vivo efficacy against RSV-induced lung inflammation and the underlying mechanism remain unclear. PURPOSE: The present study was designed to confirm the in vivo efficacy of ZTOI against lung inflammation and intestinal disorders in RSV-infected young mice and to explore the potential mechanism. STUDY DESIGN AND METHODS: Lung inflammation was induced by RSV, and cytokine antibody arrays were used to clarify the effectiveness of ZTOI in RSV pneumonia. Subsequently, key therapeutic targets of ZTOI against RSV pneumonia were identified through multi-factor detection and further confirmed. The potential therapeutic material basis of ZTOI in target tissues was determined by non-target mass spectrometry. After confirming that the pharmacological substances of ZTOI can reach the intestine, we used 16S rRNA-sequencing technology to study the effect of ZTOI on the intestinal bacteria. RESULTS: In the RSV-induced mouse lung inflammation model, ZTOI significantly reduced the levels of serum myeloperoxidase, serum amyloid A, C-reactive protein, and thymic stromal lymphoprotein; inhibited the mRNA expression of IL-10 and IL-6; and decreased pathological changes in the lungs. Immunofluorescence and qPCR experiments showed that ZTOI reduced RSV load in the lungs. According to cytokine antibody arrays, platelet factor 4 (PF4), a weak chemotactic factor mainly synthesized by megakaryocytes, showed a concentration-dependent change in lung tissues affected by ZTOI, which could be the key target for ZTOI to exert anti-inflammatory effects. Additionally, sesquiterpenes were enriched in the lungs and intestines, thereby exerting anti-inflammatory and regulatory effects on gut microbiota. CONCLUSION: ZTOI can protect from lung inflammation via PF4 and regulate gut microbiota disorder in RSV-infected young mice by sesquiterpenes, which provides reference for its clinical application in RSV-induced lung diseases.

7.
Nat Commun ; 15(1): 5163, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886381

ABSTRACT

As the most abundant organic substances in nature, carbohydrates are essential for life. Understanding how carbohydrates regulate proteins in the physiological and pathological processes presents opportunities to address crucial biological problems and develop new therapeutics. However, the diversity and complexity of carbohydrates pose a challenge in experimentally identifying the sites where carbohydrates bind to and act on proteins. Here, we introduce a deep learning model, DeepGlycanSite, capable of accurately predicting carbohydrate-binding sites on a given protein structure. Incorporating geometric and evolutionary features of proteins into a deep equivariant graph neural network with the transformer architecture, DeepGlycanSite remarkably outperforms previous state-of-the-art methods and effectively predicts binding sites for diverse carbohydrates. Integrating with a mutagenesis study, DeepGlycanSite reveals the guanosine-5'-diphosphate-sugar-recognition site of an important G-protein coupled receptor. These findings demonstrate DeepGlycanSite is invaluable for carbohydrate-binding site prediction and could provide insights into molecular mechanisms underlying carbohydrate-regulation of therapeutically important proteins.


Subject(s)
Deep Learning , Binding Sites , Carbohydrates/chemistry , Protein Binding , Neural Networks, Computer , Humans , Proteins/metabolism , Proteins/chemistry , Models, Molecular
8.
Aging (Albany NY) ; 16(12): 10216-10238, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38943627

ABSTRACT

This study aimed to reveal the specific role of early growth response protein 1 (EGR1) and nuclear receptor 4A3 (NR4A3) in nucleus pulposus cells (NPCs) and the related molecular mechanism and to identify a new strategy for treating intervertebral disc degeneration (IVDD). Bioinformatics analysis was used to explore and predict IVDD-related differentially expressed genes, and chromatin immunoprecipitation sequencing (ChIP-seq) revealed NR4A3 as the EGR1 target gene. An in vitro NPC model induced by tributyl hydrogen peroxide (TBHP) and a rat model induced by fibrous ring acupuncture were established. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical staining, immunofluorescence staining, and flow cytometry were used to detect the effects of EGR1 and NR4A3 knockdown and overexpression on NPC apoptosis and the expression of extracellular matrix (ECM) anabolism-related proteins. Interactions between EGR1 and NR4A3 were analyzed via ChIP-qPCR and dual luciferase assays. EGR1 and NR4A3 expression levels were significantly higher in severely degenerated discs (SDD) than in mildly degenerated discs (MDD), indicating that these genes are important risk factors in IVDD progression. ChIP-seq and RNA-seq revealed NR4A3 as a direct downstream target of EGR1, and this finding was verified by ChIP-qPCR and dual luciferase reporter experiments. Remarkably, the rescue experiments showed that EGR1 promotes TBHP-induced NPC apoptosis and impairs ECM anabolism, dependent on elevated NR4A3 expression. In summary, the EGR1-NR4A3 axis mediates the progression of NPC apoptosis and ECM impairment and is a potential therapeutic target in IVDD.


Subject(s)
Apoptosis , Early Growth Response Protein 1 , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Receptors, Thyroid Hormone , Up-Regulation , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Rats , Male , Humans , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/genetics , Rats, Sprague-Dawley , Receptors, Steroid/metabolism , Receptors, Steroid/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Middle Aged , Adult , Nerve Tissue Proteins
9.
Mini Rev Med Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38879767

ABSTRACT

BACKGROUND: CPEB1 is an alternative polyadenylation binding protein that promotes or suppresses the expression of related mRNAs and proteins by binding to a highly conserved Cytoplasmic Polyadenylation Element (CPE) in the mRNAs 3'UTR. It is found to express abnormally in multiple tumors and affect tumorigenesis through many pathways. This review summarizes the functions and mechanisms of CPEB1 in a variety of cancers and suggests new directions for future related treatments. METHODS: A total of 95 articles were eligible for inclusion based on the year, quality of the research, and the strength of association with CPEB1. In this review, current research about how CPEB1 affects the initiation and progression of glioblastoma, breast cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, prostate cancer, and melanoma are dissected, and the biomedical functions and mechanisms are summarized. RESULTS: CPEB1 mostly presents as a tumor suppressor for breast cancer, endometrial carcinoma, hepatocellular carcinoma, non-small cell lung cancer, prostate cancer, and melanoma. However, glioblastoma, gastric cancer, and colorectal cancer it exhibit two opposing properties of tumorigenesis, either promoting or inhibiting it. CONCLUSION: CPEB1 is likely to serve as a target and dynamic detection index or prognostic indicator for its function of apoptosis, activity, proliferation, migration, invasion, stemness, drug resistance, and even ferroptosis in various cancers.

10.
Cell Rep ; 43(7): 114389, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38935498

ABSTRACT

Kisspeptin signaling through its G protein-coupled receptor, KISS1R, plays an indispensable role in regulating reproduction via the hypothalamic-pituitary-gonadal axis. Dysregulation of this pathway underlies severe disorders like infertility and precocious puberty. Here, we present cryo-EM structures of KISS1R bound to the endogenous agonist kisspeptin-10 and a synthetic analog TAK-448. These structures reveal pivotal interactions between peptide ligands and KISS1R extracellular loops for receptor activation. Both peptides exhibit a conserved binding mode, unveiling their common activation mechanism. Intriguingly, KISS1R displays a distinct 40° angular deviation in its intracellular TM6 region compared to other Gq-coupled receptors, enabling distinct interactions with Gq. This study reveals the molecular intricacies governing ligand binding and activation of KISS1R, while highlighting its exceptional ability to couple with Gq. Our findings pave the way for structure-guided design of therapeutics targeting this physiologically indispensable receptor.

11.
Food Chem ; 457: 139708, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38936135

ABSTRACT

This study investigated the degradation of aflatoxin B1 (AFB1) in food by using dual-frequency ultrasound (DFUS) and the effects of sonochemical oxidation on the efficacy. It was found that the degradation of AFB1 by bath ultrasound (BU), probe ultrasound (PU), and DFUS were all consistent with first-order kinetics. The use of DFUS significantly increased the AFB1 degradation to 91.3%, and compared with BU and PU, it increased by about 177.0% and 61.5% after 30 min treatment. DFUS could generate a synergistic effect to accelerate the generation of free radicals, which promoted sonochemical oxidation to degrade AFB1. It could be speculated that hydroxyl radical (·OH) probably acted a dominant part in the AFB1 degradation by DFUS, and the hydrogen atoms (·H) might also are contributed. These results indicated that DFUS was an effective method of AFB1 degradation.

12.
Int J Chron Obstruct Pulmon Dis ; 19: 1391-1402, 2024.
Article in English | MEDLINE | ID: mdl-38915774

ABSTRACT

Background: Chronic Obstructive Pulmonary Disease (COPD) progression in the elderly is notably influenced by nutritional, immune, and inflammatory status. This study aimed to investigate the impact of adequate energy supply on these indicators in COPD patients. Methods: COPD patients meeting specific criteria were recruited and categorized into energy-adequate and energy-deficient groups based on their energy supply. Comparable demographic factors such as age, gender, smoking and drinking history, COPD duration, inhaled drug classification, and home oxygen therapy application were observed. Notable differences were found in BMI and inhaled drug use between the two groups. Results: The energy-adequate group exhibited significant improvements in various health indicators, including lymphocyte count, hemoglobin, CRP, total cholesterol, prealbumin, albumin, PNI, SII, SIRI, CAR, and CONUT scores in the secondary auxiliary examination. These positive changes suggest a notable enhancement in nutritional, immune, and inflammatory status. Conclusion: This research highlights the substantial benefits of adequate energy supply in elderly COPD patients. The observed improvements in nutritional, immune, and inflammatory markers underscore the importance of addressing energy needs to positively influence disease-related outcomes in this population. These findings have implications for developing targeted interventions to optimize the well-being of elderly individuals with COPD.


Subject(s)
Inflammation Mediators , Inflammation , Nutritional Status , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/blood , Male , Female , Aged , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Inflammation/immunology , Inflammation/blood , Biomarkers/blood , Energy Metabolism , Energy Intake , Age Factors , Lung/physiopathology , Lung/immunology , Aged, 80 and over , Middle Aged
13.
Cell Rep ; 43(7): 114422, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943642

ABSTRACT

Platelet-activating factor (PAF) is a potent phospholipid mediator crucial in multiple inflammatory and immune responses through binding and activating the PAF receptor (PAFR). However, drug development targeting the PAFR has been limited, partly due to an incomplete understanding of its activation mechanism. Here, we present a 2.9-Å structure of the PAF-bound PAFR-Gi complex. Structural and mutagenesis analyses unveil a specific binding mode of PAF, with the choline head forming cation-π interactions within PAFR hydrophobic pocket, while the alkyl tail penetrates deeply into an aromatic cleft between TM4 and TM5. Binding of PAF modulates conformational changes in key motifs of PAFR, triggering the outward movement of TM6, TM7, and helix 8 for G protein coupling. Molecular dynamics simulation suggests a membrane-side pathway for PAF entry into PAFR via the TM4-TM5 cavity. By providing molecular insights into PAFR signaling, this work contributes a foundation for developing therapeutic interventions targeting PAF signal axis.

14.
J Transl Med ; 22(1): 577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890669

ABSTRACT

BACKGROUND: Inherited variations in DNA double-strand break (DSB) repair pathway are known to influence ovarian cancer occurrence, progression and treatment response. Despite its significance, survival-associated genetic variants within the DSB pathway remain underexplored. METHODS: In the present study, we performed a two-phase analysis of 19,290 single-nucleotide polymorphisms (SNPs) in 199 genes in the DSB repair pathway from a genome-wide association study (GWAS) dataset and explored their associations with overall survival (OS) in 1039 Han Chinese epithelial ovarian carcinoma (EOC) patients. After utilizing multivariate Cox regression analysis with bayesian false-discovery probability for multiple test correction, significant genetic variations were identified and subsequently underwent functional prediction and validation. RESULTS: We discovered a significant association between poor overall survival and the functional variant GEN1 rs56070363 C > T (CT + TT vs. TT, adjusted hazard ratio (HR) = 2.50, P < 0.001). And the impact of GEN1 rs56070363 C > T on survival was attributed to its reduced binding affinity to hsa-miR-1287-5p and the resultant upregulation of GEN1 mRNA expression. Overexpression of GEN1 aggregated EOC cell proliferation, invasion and migration presumably by influencing the expression of immune inhibitory factors, thereby elevating the proportion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and then constructing an immunosuppressive tumor microenvironment. CONCLUSIONS: In conclusion, GEN1 rs56070363 variant could serve as a potential predictive biomarker and chemotherapeutic target for improving the survival of EOC patients.


Subject(s)
Carcinoma, Ovarian Epithelial , Holliday Junction Resolvases , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Female , Humans , Middle Aged , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/mortality , Cell Line, Tumor , Cell Movement , Cell Proliferation , China , East Asian People/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Kaplan-Meier Estimate , MicroRNAs/genetics , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Prognosis , Survival Analysis , Holliday Junction Resolvases/genetics
15.
Int Immunopharmacol ; 137: 112467, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38875997

ABSTRACT

BACKGROUND: Articular cartilage defects (ACD) are injuries with a diameter greater than 3 mm, resulting from wear and tear on joints. When the diameter of the defect exceeds 6 mm, it can further damage the surrounding joint cartilage, causing osteoarthritis (OA). Try to explain why OA is an irreversible disease, we hypothesize that damaged articular chondrocytes (DAC) may have reduced capacities to repair cartilage because its extracellular vesicle (EVs) that might directly contribute to OA formation. METHODS: In this study, DAC-EVs and AC-EVs were isolated using ultracentrifugation. Next-generation sequencing was employed to screen for a pathogenic long non-coding RNA (lncRNA). After verifying its function in vitro, the corresponding small interfering RNA (siRNA) was constructed and loaded into extracellular vesicles, which were then injected into the knee joint cavities of rats. RESULTS: The results revealed that DAC-EVs packaged lncRNA LOC102546541 acts as a competitive endogenous RNA (ceRNA) of MMP13, down-regulating miR-632. Consequently, the function of MMP13 in degrading the extracellular matrix is enhanced, promoting the development of osteoarthritis. CONCLUSIONS: This study uncovered a novel mode of OA pathogenesis using rat models, which DAC deliver pathogenic LOC102546541 packaged EVs to normal articular chondrocytes, amplifying the degradation of the extracellular matrix. Nonetheless, the functions of highly homologous human gene of LOC102546541 need to be verified in the future.


Subject(s)
Cartilage, Articular , Chondrocytes , Disease Models, Animal , Extracellular Vesicles , Matrix Metalloproteinase 13 , MicroRNAs , Osteoarthritis , RNA, Long Noncoding , Animals , Extracellular Vesicles/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Rats , Osteoarthritis/metabolism , Osteoarthritis/pathology , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Male , Humans , Cells, Cultured , RNA, Small Interfering/genetics
16.
Inflammation ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822951

ABSTRACT

Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, inflammation and fibrosis play an important role in its progression. Histone lysine crotonylation (Kcr) was first identified as a new type of post-translational modification in 2011. In recent years, prominent progress has been made in the study of sodium crotonate (NaCr) and histone Kcr in kidney diseases. However, the effects of NaCr and NaCr-induced Kcr on DKD remain unclear. In this study, db/db mice and high glucose-induced human tubular epithelial cells (HK-2) were used respectively, and exogenous NaCr and crotonoyl-coenzyme A (Cr-CoA) as intervention reagents, histone Kcr and DKD-related indicators were detected. The results confirmed that NaCr had an antidiabetic effect and decreased blood glucose and serum lipid levels and alleviated renal function and DKD-related inflammatory and fibrotic damage. NaCr also induced histone Kcr and histone H3K18 crotonylation (H3K18cr). However, NaCr and Cr-CoA-induced histone Kcr and protective effects were reversed by inhibiting the activity of Acyl-CoA synthetase short-chain family member 2 (ACSS2) or histone acyltransferase P300 in vitro. In summary, our data reveal that NaCr may mitigate DKD via an antidiabetic effect as well as through ACSS2 and P300-induced histone Kcr, suggesting that Kcr may be the potential molecular mechanism and prevention target of DKD.

17.
Nat Med ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824243

ABSTRACT

Surgery for platinum-sensitive, relapsed ovarian cancer (PSROC) is widely practiced but had contradictory survival outcomes in previous studies. In this multicenter, open-label, phase 3 trial, women with PSROC, and having had one previous therapy and no platinum-based chemotherapy (platinum-free interval) of 6 months or more, were randomly assigned to either the surgery group (182 patients) or the no-surgery group (control) (175 patients). Patients with resectable diseases were eligible according to the international model (iMODEL), combined with a positron emission tomography-computed tomography imaging. Overall survival (OS) and progression-free survival were coprimary endpoints in hierarchical testing, and a significantly longer progression-free survival with surgery was previously reported. Final analysis of OS was planned at data maturity of 59%. Between 19 July 2012 and 3 June 2019, 357 patients were enrolled. Median follow-up was 82.5 months. Median OS was 58.1 months with surgery and 52.1 months for control (hazard ratio (HR) 0.80, 95% confidence interval (CI) 0.61-1.05, P = 0.11). The predefined threshold for statistical significance was not met, but prespecified sensitivity analysis was performed. Overall, 61 of 175 (35%) patients in control had crossed over to surgery following subsequent relapse, and adjusted HR for death in the surgery group compared with control was 0.76, 95% CI 0.58-0.99. In subgroup analysis of relapse sites by imaging, median survival was not estimable in the surgery group and was 69.5 months in control in patients with <20 sites (HR 0.69, 95% CI 0.46-1.03). Patients with a complete resection had the most favorable outcome, with a median OS of 73.0 months. Twenty-four of 182 (13.2%) patients remained relapse free and alive >60 months in the surgery group as compared with five of 175 (2.9%) patients in the control group. In patients with PSROC, surgery did not increase OS in the intention-to-treat population but resulted in a prolongation of survival following adjustment of crossover.ClinicalTrials.gov registration: NCT01611766 .

18.
J Med Chem ; 67(11): 8836-8861, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38830007

ABSTRACT

More than 55 million individuals are suffering from Alzheimer's disease (AD), while the effective therapeutic strategies remain elusive. Our previous study identified a lysosome-enhancing lead compound LH2-051 with a tetrahydroisoquinoline scaffold through a novel dopamine transporter-cyclin-dependent kinase 9-transcription factor EB (DAT-CDK9-TFEB) regulation mechanism to promote TFEB activation and lysosome biogenesis. Here, we launched a comprehensive structure-activity relationship study for LH2-051, and 47 new derivatives were designed and synthesized, in which several compounds exhibited remarkable lysosome-enhancing activities. Notably, compounds 37 and 45 exhibited more favorable TFEB activation and lysosome biogenesis capabilities, good safety profiles, and excellent pharmacokinetic profiles with high brain penetration. Further investigations demonstrated that both compounds significantly enhance the clearance of Aß aggregates and ameliorate the impairment of learning, memory, and cognition in APP/PS1 mice. Overall, these results indicated that compounds 37 and 45 are promising preclinical drug candidates for the treatment of AD.


Subject(s)
Alzheimer Disease , Lysosomes , Tetrahydroisoquinolines , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Humans , Structure-Activity Relationship , Mice , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/therapeutic use , Tetrahydroisoquinolines/chemical synthesis , Drug Discovery , Male , Amyloid beta-Peptides/metabolism , Mice, Transgenic
19.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691504

ABSTRACT

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Subject(s)
Benzene , Benzene/chemistry , Organic Chemicals/chemistry , Oxidation-Reduction , Aerosols , Volatilization , Air Pollutants , Models, Theoretical
20.
J Med Genet ; 61(7): 666-676, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38724173

ABSTRACT

BACKGROUND: Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS: Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS: SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION: This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.


Subject(s)
Carbohydrate Metabolism , Scoliosis , Humans , Scoliosis/genetics , Scoliosis/pathology , Adolescent , Female , Male , Carbohydrate Metabolism/genetics , Genetic Predisposition to Disease , Child , Exome Sequencing , Monocarboxylic Acid Transporters/genetics , Case-Control Studies , Genetic Association Studies , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...