Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(5)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121247

ABSTRACT

To reduce the cost of generated electrical energy, high-concentration photovoltaic systems have been proposed to reduce the amount of semiconductor material needed by concentrating sunlight using lenses and mirrors. Due to the concentration of energy, the use of tracker or pointing systems is necessary in order to obtain the desired amount of electrical energy. However, a high degree of inaccuracy and imprecision is observed in the real installation of concentration photovoltaic systems. The main objective of this work is to design a knowledge-based controller for a high-concentration photovoltaic system (HCPV) tracker. The methodology proposed consists of using fuzzy rule-based systems (FRBS) and to implement the controller in a real system by means of Internet of Things (IoT) technologies. FRBS have demonstrated correct adaptation to problems having a high degree of inaccuracy and uncertainty, and IoT technology allows use of constrained resource devices, cloud computer architecture, and a platform to store and monitor the data obtained. As a result, two knowledge-based controllers are presented in this paper: the first based on a pointing device and the second based on the measure of the electrical current generated, which showed the best performance in the experiments carried out. New factors that increase imprecision and uncertainty in HCPV solar tracker installations are presented in the experiments carried out in the real installation.

2.
Sensors (Basel) ; 20(6)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183389

ABSTRACT

Narrowband-IoT (NB-IoT) is part of a novel group of access technologies referred to as Low-Power Wide Area Networks (LPWANs), which provide energy-efficient and long-range network access to IoT devices. Although NB-IoT Release 13 has been deployed by Mobile Network Operators (MNO), detailed Quality of Service (QoS) evaluations in public networks are still rare. In this paper, systematic physical layer measurements are conducted, and the application layer performance is verified. Special consideration is given to the influence of the radio parameters on the application layer QoS. Additionally, NB-IoT is discussed in the context of typical smart metering use cases. The results indicate that NB-IoT meets most theoretical Third Generation Partnership Project (3GPP) design goals in a commercial deployment. NB-IoT provides a wide coverage by using signal repetitions, which improve the receiver sensitivity, but simultaneously increase the system latency. The maximum data rates are consistent over a wide range of coverage situations. Overall, NB-IoT is a reliable and flexible LPWAN technology for sensor applications even under challenging radio conditions. Four smart metering transmission categories are analyzed, and NB-IoT is verified to be appropriate for applications that are not latency sensitive.

3.
Sensors (Basel) ; 20(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878163

ABSTRACT

Noise pollution is a problem that affects millions of people worldwide. Over the last few years, many researchers have devoted their attention to the design of wireless acoustic sensor networks (WASNs) to monitor the real data of continuous and precise noise levels and to create noise maps in real time and space. Although WASNs are becoming a reality in smart cities, some research studies argue that very few projects have been deployed around the world, with most of them deployed as pilots for only days or weeks, with a small number of nodes. In this paper, we describe the design and implementation of a complete system for a WASN deployed in the city of Linares (Jaén), Spain, which has been running continuously for ten months. The complete system covers the network topology design, hardware and software of the sensor nodes, protocols, and a private cloud web server platform. As a result, the information provided by the system for each location where the sensor nodes are deployed is as follows: LAeq for a given period of time; noise indicators Lden, Lday, Levening, and Lnight; percentile noise levels (LA01T, LA10T, LA50T, LA90T, and LA99T); a temporal evolution representation of noise levels; and the predominant frequency of the noise. Some comparisons have been made between the noise indicators calculated by the sensor nodes and those from a commercial sound level meter. The results suggest that the proposed system is perfectly suitable for use as a starting point to obtain accurate maps of the noise levels in smart cities.

4.
Sensors (Basel) ; 11(10): 9136-59, 2011.
Article in English | MEDLINE | ID: mdl-22163687

ABSTRACT

Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.


Subject(s)
Algorithms , Computer Communication Networks/instrumentation , Cooperative Behavior , Knowledge Bases , Wireless Technology/instrumentation , Animals , Fungi/physiology , Fuzzy Logic , Humidity , Models, Biological , Moths/physiology , Olea/microbiology , Olea/parasitology
5.
Sensors (Basel) ; 10(10): 8827-49, 2010.
Article in English | MEDLINE | ID: mdl-22163383

ABSTRACT

Although many recent studies have focused on the development of new applications for wireless sensor networks, less attention has been paid to knowledge-based sensor nodes. The objective of this work is the development in a real network of a new distributed system in which every sensor node can execute a set of applications, such as fuzzy ruled-base systems, measures, and actions. The sensor software is based on a multi-agent structure that is composed of three components: management, application control, and communication agents; a service interface, which provides applications the abstraction of sensor hardware and other components; and an application layer protocol. The results show the effectiveness of the communication protocol and that the proposed system is suitable for a wide range of applications. As real world applications, this work presents an example of a fuzzy rule-based system and a noise pollution monitoring application that obtains a fuzzy noise indicator.


Subject(s)
Computer Communication Networks/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telemetry/instrumentation , Telemetry/methods , Wireless Technology/instrumentation , Artificial Intelligence , Equipment Design , Software
6.
Sensors (Basel) ; 10(6): 6044-62, 2010.
Article in English | MEDLINE | ID: mdl-22219701

ABSTRACT

This work presents a new approach for collaboration among sensors in Wireless Sensor Networks. These networks are composed of a large number of sensor nodes with constrained resources: limited computational capability, memory, power sources, etc. Nowadays, there is a growing interest in the integration of Soft Computing technologies into Wireless Sensor Networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks. The objective of this work is to design a collaborative knowledge-based network, in which each sensor executes an adapted Fuzzy Rule-Based System, which presents significant advantages such as: experts can define interpretable knowledge with uncertainty and imprecision, collaborative knowledge can be separated from control or modeling knowledge and the collaborative approach may support neighbor sensor failures and communication errors. As a real-world application of this approach, we demonstrate a collaborative modeling system for pests, in which an alarm about the development of olive tree fly is inferred. The results show that knowledge-based sensors are suitable for a wide range of applications and that the behavior of a knowledge-based sensor may be modified by inferences and knowledge of neighbor sensors in order to obtain a more accurate and reliable output.


Subject(s)
Computer Communication Networks/instrumentation , Knowledge Bases , Remote Sensing Technology/instrumentation , Wireless Technology/instrumentation , Algorithms , Cooperative Behavior , Electric Power Supplies , Fuzzy Logic , Models, Biological , Models, Theoretical , Remote Sensing Technology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...