Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-21167954

ABSTRACT

The effect of diet on larval growth, anionic trypsinogen gene expression (ssetryp1), and trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) activities was assessed in Solea senegalensis. Changes in larval carbon stable isotope (δ(13)C) composition were used to estimate carbon assimilation. Diets were supplied for 20days to fish held in larval rearing tanks and consisted of live rotifers, Artemia sp. nauplii, rotifers followed by Artemia sp., rotifers co-fed with inert diet and inert diet alone. Growth was significantly faster in larvae fed only Artemia and those fed rotifers and Artemia (k=0.381-0.387day(-1)). Trypsin and chymotrypsin activities increased from 3 to 4days after hatching (DAH) in all dietary treatments, while ssetryp1 transcripts increased at 4-5 DAH only in larvae fed live prey. ssetryp1 gene expression was activated later in larvae fed only Artemia and this corresponded with Artemia δ(13)C values being reflected in larval tissue. Larval δ(13)C values also indicated greater selection and/or assimilation of rotifers in relation to the inert diet. Results demonstrate that during early larval development of sole, diet modulates ssetryp1 gene expression. The rapid and intense response to diets that promoted different growth and survival suggests the suitability of this biomarker as a nutritional status indicator in early sole larvae.


Subject(s)
Flatfishes/metabolism , Trypsinogen/metabolism , Animals , Carbon/analysis , Carbon/metabolism , Chymotrypsin/metabolism , Diet , Flatfishes/genetics , Flatfishes/growth & development , Gene Expression , Larva/enzymology , Larva/genetics , Nitrogen/analysis , Trypsin/metabolism , Trypsinogen/genetics
2.
Sci Total Environ ; 408(4): 822-8, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19906403

ABSTRACT

This work presents the results of an interlaboratory proficiency exercise for whole-sediment toxicity assays with the benthic marine diatom Cylindrotheca closterium. An assay protocol was established and followed by all participating laboratories. Cell growth after 72 h exposure was the endpoint used. Four sediment samples of unknown toxicity were assayed. The main problem encountered during this exercise was the differences in the cell growth of algae exposed to reference sediment. Those differences may be associated with changes in the physiological status of the initial culture due to temperature changes during transport to the other laboratories. In general, the method proposed presented good replicability (precision between replicates) and reproducibility (interlaboratory precision). Around 80% (17 out of 21) of results obtained were classified as satisfactory (Z-scores <2). The whole-sediment assay with C. closterium presented here can be considered sufficiently successful for possible use as a standard toxicity test. The assay is simple to perform, the proposed species is ecologically relevant as an integral component of microphytobenthos, and is widely distributed around the world. These positive factors suggest that the whole-sediment assay with the benthic marine diatom C. closterium can be used as a reliable tool in marine sediment quality assessment.


Subject(s)
Diatoms/drug effects , Environmental Monitoring/methods , Geologic Sediments/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Biological Assay/methods , Biological Assay/standards , Clinical Laboratory Techniques/standards , Diatoms/growth & development , Environmental Monitoring/standards , Portugal , Reproducibility of Results , Spain , Toxicity Tests/standards , Water Pollutants, Chemical/analysis
3.
BMC Genomics ; 9: 508, 2008 Oct 30.
Article in English | MEDLINE | ID: mdl-18973667

ABSTRACT

BACKGROUND: The Senegalese sole, Solea senegalensis, is a highly prized flatfish of growing commercial interest for aquaculture in Southern Europe. However, despite the industrial production of Senegalese sole being hampered primarily by lack of information on the physiological mechanisms involved in reproduction, growth and immunity, very limited genomic information is available on this species. RESULTS: Sequencing of a S. senegalensis multi-tissue normalized cDNA library, from adult tissues (brain, stomach, intestine, liver, ovary, and testis), larval stages (pre-metamorphosis, metamorphosis), juvenile stages (post-metamorphosis, abnormal fish), and undifferentiated gonads, generated 10,185 expressed sequence tags (ESTs). Clones were sequenced from the 3'-end to identify isoform specific sequences. Assembly of the entire EST collection into contigs gave 5,208 unique sequences of which 1,769 (34%) had matches in GenBank, thus showing a low level of redundancy. The sequence of the 5,208 unigenes was used to design and validate an oligonucleotide microarray representing 5,087 unique Senegalese sole transcripts. Finally, a novel interactive bioinformatic platform, Soleamold, was developed for the Senegalese sole EST collection as well as microarray and ISH data. CONCLUSION: New genomic resources have been developed for S. senegalensis, an economically important fish in aquaculture, which include a collection of expressed genes, an oligonucleotide microarray, and a publicly available bioinformatic platform that can be used to study gene expression in this species. These resources will help elucidate transcriptional regulation in wild and captive Senegalese sole for optimization of its production under intensive culture conditions.


Subject(s)
Flatfishes/genetics , Genome/genetics , Genomics/methods , Animals , Base Sequence , Computational Biology/methods , Expressed Sequence Tags , Gene Library , Oligonucleotide Array Sequence Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...