Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Dent Mater ; 35(6): 883-892, 2019 06.
Article in English | MEDLINE | ID: mdl-30975483

ABSTRACT

OBJECTIVES: To compare biofilm formation on the surface of different ceramic biomaterials to be used in implant dentistry. METHODS: In vitro biofilm formation was investigated from mixtures of standard reference strains of Streptococcus oralis, Veillonella parvula, Actinomyces naeslundii, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Sterile ceramic calcium hydroxyapatite discs (HA) as control, sterile Al2O3/Ce-TZP nanocomposite sandblasted discs (material A1) and sterile Al2O3/Ce-TZP nanocomposite sandblasted discs and coated with two types of antimicrobial glasses (materials A2 and A3) were used. Biofilms were grown on the four surfaces and evaluated after 12, 24, 48 and 72 h of incubation. Biofilms were examined by confocal laser scanning microscopy (CLSM). In addition, counts of live bacterial cells of the target species A. actinomycetemcomitans, F. nucleatum and P. gingivalis were calculated by quantitative polymerase chain reaction (qPCR) combined with propidium monoazide (PMA). For data analysis, bacterial counts were compared with a multivariate general lineal model. RESULTS: Using CLSM, cell vitality decreased in A2 and A3. With qPCR-PMA, significant differences in vitality were observed forA. actinomycetemcomitans in A3 after 48 and 72 h of incubation. With respect to the development of the biofilms, a significant increase in counts on HA and materials A1 and A2 was observed for A. actinomycetemcomitans and F. nucleatum. Conversely, for P. gingivalis, no differences were found for HA and materials A1 and A2. SIGNIFICANCE: Differences in biofilm formation were detected among the different tested materials. The ceramic material A3 has an effect on the vitality of A. actinomycetemcomitans growing in an in vitro biofilm model.


Subject(s)
Biocompatible Materials , Fusobacterium nucleatum , Biofilms , Ceramics , Porphyromonas gingivalis , Streptococcus oralis
2.
Biomed Mater ; 11(4): 045014, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27509353

ABSTRACT

Two types of antimicrobial glass fibers containing ZnO and CaO, with diameters ranging from tens of nanometers to 1 µm, were successfully fabricated by a laser spinning technique. The antimicrobial performance was corroborated according to ISO 20743:2013, by using gram-negative (Escherichia coli) and gram-positive (Streptococcus oralis, Streptococcus mutans and Staphylococcus aureus) bacteria, and yeast (Candida krusei) (more than 3 logs of reduction). The metabolic activity and endosomal system of eukaryotic cells were not altered by using eluents of CaO glass submicrometric fibers and ZnO fibers at 1 : 10 dilution as cellular media (viability rates over 70%). A dental material was functionalized by embedding ZnO nanofibers above the percolation threshold (20% wt), creating a three-dimensional (3D) fiber network that added an antimicrobial profile. This new ZnO glass fiber composite is proved non-cytotoxic and preserved the antimicrobial effect after immersion in human saliva. This is the first time that a fiber-reinforced liner with strong antimicrobial-activity has been created to prevent secondary caries. The potential of developing new fiber-reinforced composites (FRCs) with antimicrobial properties opens up an extensive field of dental applications where most important diseases have an infectious origin.


Subject(s)
Anti-Infective Agents/chemistry , Dental Materials/chemistry , Glass/chemistry , Resin Cements/chemistry , Animals , Calcium Compounds/chemistry , Candida , Composite Resins , Dental Stress Analysis , Escherichia coli , Humans , Methacrylates/chemistry , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Oxides/chemistry , Saliva/chemistry , Saliva/drug effects , Staphylococcus aureus , Streptococcus mutans , Streptococcus oralis , Zinc/chemistry , Zinc Oxide/chemistry
3.
Nanotechnology ; 21(47): 475705, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21030755

ABSTRACT

Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Kaolin/chemistry , Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Bacteria/drug effects , Chemical Precipitation , Nanoparticles/ultrastructure , Yeasts/drug effects
4.
Chemosphere ; 76(4): 433-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19414188

ABSTRACT

The purpose of this work was to explore the kinetics of naphthalene adsorption on an activated carbon from aqueous and organic solutions. Kinetic curves were fitted to different theoretical models, and the results have been discussed in terms of the nature and properties of the solvents, the affinity of naphthalene to the solutions, and the accessibility to the porosity of the activated carbon. Data was fitted to the pseudo-second order kinetic model with good correlation coefficients for all the solution media. The faster adsorption rate was obtained for the most hydrophobic solvent (heptane). The overall adsorption rate of naphthalene seems to be controlled simultaneously by external (boundary layer) followed by intraparticle diffusion in the porosity of the activated carbon when water, ethanol and cyclohexane are used as solvents. In the case of heptane, only two stages were observed (pore diffusion and equilibrium) suggesting that the limiting stage is the intraparticle diffusion. The low value of the boundary thickness supports this observation.


Subject(s)
Charcoal/chemistry , Naphthalenes/chemistry , Solvents/chemistry , Water/chemistry , Adsorption , Diffusion , Hydrophobic and Hydrophilic Interactions , Kinetics
5.
J Hazard Mater ; 166(2-3): 1289-95, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19155132

ABSTRACT

The purpose of this work is to explore steam reactivation at moderate temperatures of activated carbon exhausted with phenol, a highly toxic compound frequently present in industrial wastewater. The spent carbon was treated with steam at various temperatures (450, 600 and 850 degrees C) and times (from 5 to 60 min). Promising results were obtained by applying moderate temperatures and times. Whereas at low temperatures the complete regeneration of the carbon is not accomplished, an almost quantitative desorption of the pollutant was achieved at 600 degrees C after exposure times below 30 min, with minimal damages in the porous network of the carbon. Further reutilization of the regenerated carbon resulted in a superior performance towards phenol uptake. The regeneration efficiency at 850 degrees C strongly depends on the time of reactivation, with an enhanced phenol uptake when short treatment times are applied. Prolonged duration of the regeneration treatment reduced phenol adsorption capacities, due to overreactivation of the carbon in the steam atmosphere, and to the blockage of the porous carbon network.


Subject(s)
Charcoal/chemistry , Industrial Waste/prevention & control , Phenol/isolation & purification , Adsorption , Steam , Temperature , Water Pollutants, Chemical/isolation & purification
6.
Water Res ; 41(2): 333-40, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17126375

ABSTRACT

The aim of this work was to correlate the textural and chemical features of carbonaceous adsorbents with the adsorption capacity of naphthalene from aqueous phase, at the concentration in which this compound is usually found in wastewater from coke ovens. The study reveals that the adsorption capacity in different carbon materials depends not only on the textural characteristics of the material but also on the functionalities of the activated carbons. The micropores of the adsorbents, particularly those of narrower diameter, were found to be active sites for the retention of naphthalene. In contrast, the modification of the surface chemistry of the carbon materials led to a decrease in the adsorption capacities. Dispersive forces play an important role, and adsorbents with a higher non-polar character have proven to be more efficient for the naphthalene adsorption. This behaviour has been linked to the presence of specific interactions between the basal planes and the polyaromatic structure of the naphthalene molecule.


Subject(s)
Carbon/chemistry , Naphthalenes/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Adsorption , Coke , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...