Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Mol Ecol Resour ; 24(1): e13890, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937674

ABSTRACT

A new method is developed to estimate the contemporary effective population size (Ne ) from linkage disequilibrium (LD) between SNPs without information on their location, which is the usual scenario in non-model species. The general theory of linkage disequilibrium is extended to include the contribution of full-sibs to the measure of LD, leading naturally to the estimation of Ne in monogamous and polygamous mating systems, as well as in multiparous species, and with non-random distributions of full-sib family size due to selection or other causes. Prediction of confidence intervals for Ne estimates was solved using a small artificial neural network trained on a dataset of over 105 simulation results. The method, implemented in a user-friendly and fast software (currentNe), is able to estimate Ne even in problematic scenarios with large population sizes or small sample sizes and provides confidence intervals that are more consistent than resampling methods.


Subject(s)
Polymorphism, Single Nucleotide , Software , Population Density , Linkage Disequilibrium , Computer Simulation , Models, Genetic
2.
Genet Sel Evol ; 55(1): 86, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049712

ABSTRACT

BACKGROUND: Effective population size (Ne) is a crucial parameter in conservation genetics and animal breeding. A recent method, implemented by the software GONE, has been shown to be rather accurate in estimating recent historical changes in Ne from a single sample of individuals. However, GONE estimations assume that the population being studied has remained isolated for a period of time, that is, without migration or confluence of other populations. If this occurs, the estimates of Ne can be heavily biased. In this paper, we evaluate the impact of migration and admixture on the estimates of historical Ne provided by GONE through a series of computer simulations considering several scenarios: (a) the mixture of two or more ancestral populations; (b) subpopulations that continuously exchange individuals through migration; (c) populations receiving migrants from a large source; and (d) populations with balanced systems of chromosomal inversions, which also generate genetic structure. RESULTS: Our results indicate that the estimates of historical Ne provided by GONE may be substantially biased when there has been a recent mixture of populations that were previously separated for a long period of time. Similarly, biases may occur when the rate of continued migration between populations is low, or when chromosomal inversions are present at high frequencies. However, some biases due to population structuring can be eliminated by conducting population structure analyses and restricting the estimation to the differentiated groups. In addition, disregarding the genomic regions that are involved in inversions can also remove biases in the estimates of Ne. CONCLUSIONS: Different kinds of deviations from isolation and panmixia of the populations can generate biases in the recent historical estimates of Ne. Therefore, estimation of past demography could benefit from performing population structure analyses beforehand, by mitigating the impact of these biases on historical Ne estimates.


Subject(s)
Chromosome Inversion , Software , Humans , Animals , Population Density , Computer Simulation , Genetics, Population
3.
Mol Ecol Resour ; 23(7): 1632-1640, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37455584

ABSTRACT

The availability of a large number of high-density markers (SNPs) allows the estimation of historical effective population size (Ne ) from linkage disequilibrium between loci. A recent refinement of methods to estimate historical Ne from the recent past has been shown to be rather accurate with simulation data. The method has also been applied to real data for numerous species. However, the simulation data cannot encompass all the complexities of real genomes, and the performance of any estimation method with real data is always uncertain, as the true demography of the populations is not known. Here, we carried out an experimental design with Drosophila melanogaster to test the method with real data following a known demographic history. We used a population maintained in the laboratory with a constant census size of about 2800 individuals and subjected the population to a drastic decline to a size of 100 individuals. After a few generations, the population was expanded back to the previous size and after a few further generations again expanded to twice the initial size. Estimates of historical Ne were obtained with the software GONE both for autosomal and X chromosomes from samples of 17 individuals sequenced for the whole genome. Estimates of the historical effective size were able to infer the patterns of changes that occurred in the populations showing generally good performance of the method. We discuss the limitations of the method and the application of the software carried out so far.


Subject(s)
Drosophila melanogaster , Software , Animals , Population Density , Drosophila melanogaster/genetics , Computer Simulation , Linkage Disequilibrium , X Chromosome , Genetics, Population
4.
Evol Appl ; 16(7): 1302-1315, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37492144

ABSTRACT

Inbreeding depression (ID), the reduction in fitness due to inbreeding, is typically measured by the regression of the phenotypic values of individuals for a particular trait on their corresponding inbreeding coefficients (F). While genealogical records can provide these coefficients, they may be unavailable or incomplete, making molecular markers a useful alternative. The power to detect ID and its accuracy depend on the variation of F values of individuals, the sample sizes available, and the accuracy in the estimation of individual fitness traits and F values. In this study, we used Drosophila melanogaster to evaluate the effectiveness of molecular markers in estimating ID under suboptimal conditions. We generated two sets of 100 pairs of unrelated individuals from a large panmictic population and mated them for two generations to produce non-inbred and unrelated individuals (F = 0) and inbred individuals (full-sib progeny; F = 0.25). Using these expected genealogical F values, we calculated inbreeding depression for two fitness-related traits, pupae productivity and competitive fitness. We then sequenced the males from 17 non-inbred pairs and 17 inbred pairs to obtain their genomic inbreeding coefficients and estimate ID for the two traits. The scenario assumed was rather restrictive in terms of estimation of ID because: (1) the individuals belonged to the same generation of a large panmictic population, leading to low variation in individual F coefficients; (2) the sample sizes were small; and (3) the traits measured depended on both males and females while only males were sequenced. Despite the challenging conditions of our study, we found that molecular markers provided estimates of ID that were comparable to those obtained from simple pedigree estimations with larger sample sizes. The results therefore suggest that genomic measures of inbreeding are useful to provide estimates of inbreeding depression even under very challenging scenarios.

5.
Genet Sel Evol ; 54(1): 82, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575379

ABSTRACT

BACKGROUND: The availability of genome-wide marker data allows estimation of inbreeding coefficients (F, the probability of identity-by-descent, IBD) and, in turn, estimation of the rate of inbreeding depression (ΔID). We investigated, by computer simulations, the accuracy of the most popular estimators of inbreeding based on molecular markers when computing F and ΔID in populations under random mating, equalization of parental contributions, and artificially selected populations. We assessed estimators described by Li and Horvitz (FLH1 and FLH2), VanRaden (FVR1 and FVR2), Yang and colleagues (FYA1 and FYA2), marker homozygosity (FHOM), runs of homozygosity (FROH) and estimates based on pedigree (FPED) in comparison with estimates obtained from IBD measures (FIBD). RESULTS: If the allele frequencies of a base population taken as a reference for the computation of inbreeding are known, all estimators based on marker allele frequencies are highly correlated with FIBD and provide accurate estimates of the mean ΔID. If base population allele frequencies are unknown and current frequencies are used in the estimations, the largest correlation with FIBD is generally obtained by FLH1 and the best estimator of ΔID is FYA2. The estimators FVR2 and FLH2 have the poorest performance in most scenarios. The assumption that base population allele frequencies are equal to 0.5 results in very biased estimates of the average inbreeding coefficient but they are highly correlated with FIBD and give relatively good estimates of ΔID. Estimates obtained directly from marker homozygosity (FHOM) substantially overestimated ΔID. Estimates based on runs of homozygosity (FROH) provide accurate estimates of inbreeding and ΔID. Finally, estimates based on pedigree (FPED) show a lower correlation with FIBD than molecular estimators but provide rather accurate estimates of ΔID. An analysis of data from a pig population supports the main findings of the simulations. CONCLUSIONS: When base population allele frequencies are known, all marker-allele frequency-based estimators of inbreeding coefficients generally show a high correlation with FIBD and provide good estimates of ΔID. When base population allele frequencies are unknown, FLH1 is the marker frequency-based estimator that is most correlated with FIBD, and FYA2 provides the most accurate estimates of ΔID. Estimates from FROH are also very precise in most scenarios. The estimators FVR2 and FLH2 have the poorest performances.


Subject(s)
Inbreeding Depression , Inflammatory Bowel Diseases , Swine , Animals , Inbreeding , Polymorphism, Single Nucleotide , Homozygote , Pedigree , Genotype
6.
PLoS Genet ; 18(1): e1009764, 2022 01.
Article in English | MEDLINE | ID: mdl-35077457

ABSTRACT

The effective population size (Ne) is a key parameter to quantify the magnitude of genetic drift and inbreeding, with important implications in human evolution. The increasing availability of high-density genetic markers allows the estimation of historical changes in Ne across time using measures of genome diversity or linkage disequilibrium between markers. Directional selection is expected to reduce diversity and Ne, and this reduction is modulated by the heterogeneity of the genome in terms of recombination rate. Here we investigate by computer simulations the consequences of selection (both positive and negative) and recombination rate heterogeneity in the estimation of historical Ne. We also investigate the relationship between diversity parameters and Ne across the different regions of the genome using human marker data. We show that the estimates of historical Ne obtained from linkage disequilibrium between markers (NeLD) are virtually unaffected by selection. In contrast, those estimates obtained by coalescence mutation-recombination-based methods can be strongly affected by it, which could have important consequences for the estimation of human demography. The simulation results are supported by the analysis of human data. The estimates of NeLD obtained for particular genomic regions do not correlate, or they do it very weakly, with recombination rate, nucleotide diversity, proportion of polymorphic sites, background selection statistic, minor allele frequency of SNPs, loss of function and missense variants and gene density. This suggests that NeLD measures mainly reflect demographic changes in population size across generations.


Subject(s)
Computational Biology/methods , Genetic Markers , Linkage Disequilibrium , Chromosome Mapping , Humans , Polymorphism, Single Nucleotide , Population Density , Recombination, Genetic , Selection, Genetic
7.
Genet Sel Evol ; 53(1): 85, 2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34742227

ABSTRACT

BACKGROUND: The high fecundity of fish species allows intense selection to be practised and therefore leads to fast genetic gains. Based on this, numerous selective breeding programmes have been started in Europe in the last decades, but in general, little is known about how the base populations of breeders have been built. Such knowledge is important because base populations can be created from very few individuals, which can lead to small effective population sizes and associated reductions in genetic variability. In this study, we used genomic information that was recently made available for turbot (Scophthalmus maximus), gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and common carp (Cyprinus carpio) to obtain accurate estimates of the effective size for commercial populations. METHODS: Restriction-site associated DNA sequencing data were used to estimate current and historical effective population sizes. We used a novel method that considers the linkage disequilibrium spectrum for the whole range of genetic distances between all pairs of single nucleotide polymorphisms (SNPs), and thus accounts for potential fluctuations in population size over time. RESULTS: Our results show that the current effective population size for these populations is small (equal to or less than 50 fish), potentially putting the sustainability of the breeding programmes at risk. We have also detected important drops in effective population size about five to nine generations ago, most likely as a result of domestication and the start of selective breeding programmes for these species in Europe. CONCLUSIONS: Our findings highlight the need to broaden the genetic composition of the base populations from which selection programmes start, and suggest that measures designed to increase effective population size within all farmed populations analysed here should be implemented in order to manage genetic variability and ensure the sustainability of the breeding programmes.


Subject(s)
Bass , Carps , Flatfishes , Sea Bream , Animals , Humans , Population Density , Selective Breeding
8.
Heredity (Edinb) ; 127(4): 373-383, 2021 10.
Article in English | MEDLINE | ID: mdl-34400819

ABSTRACT

Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125-234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.


Subject(s)
Inbreeding Depression , Inbreeding , Alleles , Animals , Drosophila melanogaster/genetics , Plant Breeding
9.
Hum Genet ; 140(9): 1343-1351, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34228221

ABSTRACT

Recent studies have shown the ubiquity of pleiotropy for variants affecting human complex traits. These studies also show that rare variants tend to be less pleiotropic than common ones, suggesting that purifying natural selection acts against highly pleiotropic variants of large effect. Here, we investigate the mean frequency, effect size and recombination rate associated with pleiotropic variants, and focus particularly on whether highly pleiotropic variants are enriched in regions with putative strong background selection. We evaluate variants for 41 human traits using data from the NHGRI-EBI GWAS Catalog, as well as data from other three studies. Our results show that variants involving a higher degree of pleiotropy tend to be more common, have larger mean effect sizes, and contribute more to heritability than variants with a lower degree of pleiotropy. This is consistent with the fact that variants of large effect and frequency are more likely detected by GWAS. Using data from four different studies, we also show that more pleiotropic variants are enriched in genome regions with stronger background selection than less pleiotropic variants, suggesting that highly pleiotropic variants are subjected to strong purifying selection. From the above results, we hypothesized that a number of highly pleiotropic variants of low effect/frequency may pass undetected by GWAS.


Subject(s)
Genetic Pleiotropy , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Humans
10.
Genet Sel Evol ; 53(1): 42, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33933002

ABSTRACT

BACKGROUND: Genomic relationship matrices are used to obtain genomic inbreeding coefficients. However, there are several methodologies to compute these matrices and there is still an unresolved debate on which one provides the best estimate of inbreeding. In this study, we investigated measures of inbreeding obtained from five genomic matrices, including the Nejati-Javaremi allelic relationship matrix (FNEJ), the Li and Horvitz matrix based on excess of homozygosity (FL&H), and the VanRaden (methods 1, FVR1, and 2, FVR2) and Yang (FYAN) genomic relationship matrices. We derived expectations for each inbreeding coefficient, assuming a single locus model, and used these expectations to explain the patterns of the coefficients that were computed from thousands of single nucleotide polymorphism genotypes in a population of Iberian pigs. RESULTS: Except for FNEJ, the evaluated measures of inbreeding do not match with the original definitions of inbreeding coefficient of Wright (correlation) or Malécot (probability). When inbreeding coefficients are interpreted as indicators of variability (heterozygosity) that was gained or lost relative to a base population, both FNEJ and FL&H led to sensible results but this was not the case for FVR1, FVR2 and FYAN. When variability has increased relative to the base, FVR1, FVR2 and FYAN can indicate that it decreased. In fact, based on FYAN, variability is not expected to increase. When variability has decreased, FVR1 and FVR2 can indicate that it has increased. Finally, these three coefficients can indicate that more variability than that present in the base population can be lost, which is also unreasonable. The patterns for these coefficients observed in the pig population were very different, following the derived expectations. As a consequence, the rate of inbreeding depression estimated based on these inbreeding coefficients differed not only in magnitude but also in sign. CONCLUSIONS: Genomic inbreeding coefficients obtained from the diagonal elements of genomic matrices can lead to inconsistent results in terms of gain and loss of genetic variability and inbreeding depression estimates, and thus to misleading interpretations. Although these matrices have proven to be very efficient in increasing the accuracy of genomic predictions, they do not always provide a useful measure of inbreeding.


Subject(s)
Inbreeding/methods , Models, Genetic , Polymorphism, Single Nucleotide , Swine/genetics , Animals
11.
Evol Appl ; 14(2): 416-428, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33664785

ABSTRACT

The inbreeding coefficient (F) of individuals can be estimated from molecular marker data, such as SNPs, using measures of homozygosity of individual markers or runs of homozygosity (ROH) across the genome. These different measures of F can then be used to estimate the rate of inbreeding depression (ID) for quantitative traits. Some recent simulation studies have investigated the accuracy of this estimation with contradictory results. Whereas some studies suggest that estimates of inbreeding from ROH account more accurately for ID, others suggest that inbreeding measures from SNP-by-SNP homozygosity giving a large weight to rare alleles are more accurate. Here, we try to give more light on this issue by carrying out a set of computer simulations considering a range of population genetic parameters and population sizes. Our results show that the previous studies are indeed not contradictory. In populations with low effective size, where relationships are more tight and selection is relatively less intense, F measures based on ROH provide very accurate estimates of ID whereas SNP-by-SNP-based F measures with high weight to rare alleles can show substantial upwardly biased estimates of ID. However, in populations of large effective size, with more intense selection and trait allele frequencies expected to be low if they are deleterious for fitness because of purifying selection, average estimates of ID from SNP-by-SNP-based F values become unbiased or slightly downwardly biased and those from ROH-based F values become slightly downwardly biased. The noise attached to all these estimates, nevertheless, can be very high in large-sized populations. We also investigate the relationship between the different F measures and the homozygous mutation load, which has been suggested as a proxy of inbreeding depression.

12.
Animals (Basel) ; 11(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668487

ABSTRACT

This study aimed to compare, first, the anesthetic and cardiopulmonary effects of propofol or isoflurane anesthetic maintenance in goats receiving a fentanyl-lidocaine-ketamine infusion undergoing abomasotomy and, secondly, to compare the quality of the recovery from anesthesia. Two groups were used: propofol (TIVA) and isoflurane (PIVA). Goats were premedicated with fentanyl (10 µg/kg intravenously [IV]), lidocaine (2 mg/kg, IV), and ketamine (1.5 mg/kg, IV). Anesthesia was induced with propofol and maintenance consisted of fentanyl (10 µg/kg/h, IV), lidocaine (50 µg/kg/min, IV), and ketamine (50 µg/kg/min, IV) as constant-rate infusions (CRIs), combined with either CRI of propofol at initial dose of 0.3 mg/kg/min, IV (TIVA), or isoflurane with initial end-tidal (FE'Iso) concentration of 1.2% partial intravenous anesthesia (PIVA). The mean effective propofol dose for maintenance was 0.44 ± 0.07 mg/kg/min, while the mean FE'Iso was 0.81 ± 0.2%. Higher systolic arterial pressure (SAP) values were observed in total intravenous anesthesia (TIVA) during some time points. Recovery was smooth in PIVA, while restlessness, vocalizations, and paddling were observed in TIVA. Both protocols produced a satisfactory quality of anesthesia during surgery, with minimal impact on cardiopulmonary function. Nevertheless, recovery after anesthesia in TIVA might be of poor quality.

13.
Immunotherapy ; 13(4): 289-295, 2021 03.
Article in English | MEDLINE | ID: mdl-33397150

ABSTRACT

In COVID-19, the inflammatory cytokine-release syndrome is associated with the progression of the disease. Itolizumab is a monoclonal antibody that recognizes human CD6 expressed in activated T cells. The antibody has shown to be safe and efficacious in the treatment of moderate to severe psoriasis. Its effect is associated with the reduction of pro-inflammatory cytokines release, including IFN-γ, IL-6 and TNF-α. Here, we report the outcome of three severe and critically ill COVID-19 patients treated with itolizumab as part of an expanded access protocol. Itolizumab was able to reduce IL-6 concentrations in all the patients. Two of the three patients showed respiratory and radiological improvement and were fully recovered. We hypothesize this anti-inflammatory therapy in addition to antiviral and anticoagulant therapy could reduce COVID-19 associated morbidity and mortality.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Aged, 80 and over , Biomarkers/blood , COVID-19/pathology , Critical Illness , Cytokine Release Syndrome/pathology , Drug Therapy, Combination , Female , Humans , Interleukin-6/blood , Male , Middle Aged , SARS-CoV-2 , Treatment Outcome
14.
Curr Eye Res ; 46(5): 638-647, 2021 05.
Article in English | MEDLINE | ID: mdl-32938252

ABSTRACT

PURPOSE: S. epidermidis is an ocular pathogen and a leading cause of keratitis. It produces hemolysins and at least 3 proteases. The purpose of the present study is to compare the secretion of hemolysins and proteases between 28 ocular isolates and one non-ocular strain and to determine their relationship to ocular virulence in selected strains using a rabbit model of infection. MATERIALS AND METHODS: Culture supernatants were compared for protease production and hemolysis. Selected strains were injected into rabbit corneas and their virulence and pathology recorded. The major protease activity in a virulent strain was identified and the gene was cloned and expressed as a recombinant protein. The corneal toxicity of this protease was determined. Antibodies to the native protease were generated and tested for neutralizing activity in vivo and in vitro. The corneal pathology of the S. epidermidis protease was compared to the pathology of S. aureus V8 protease. RESULTS: Strains that exhibited the least protease activity in vitro caused significantly less ocular pathology in vivo (p ≤ 0.003). Strains that were hemolytic and secreted a major protease had numerically higher SLE scores. This protease was identified as the serine protease Esp. The recombinant Esp protease caused extensive pathology when injected into the corneal stroma (7.62 ± 0.33). Antibody generated against native Esp did not neutralize the activity of the protease in vivo or in vitro. The antibody reacted with Esp proteases secreted by other S. epidermidis strains. S. epidermidis Esp protease and its homologue in S. aureus caused similar ocular pathology when injected in the rabbit corneal stroma. CONCLUSION: Hemolysins and proteases seem to be important in corneal pathology caused by S. epidermidis infections. The Esp protease mediates significant corneal damage. S. epidermidis Esp and S. aureus V8 protease caused similar and extensive edema in rabbit corneas.


Subject(s)
Corneal Stroma/microbiology , Corneal Ulcer/microbiology , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/pathogenicity , Animals , Bacterial Typing Techniques , Blotting, Western , Colony Count, Microbial , Corneal Stroma/drug effects , Corneal Ulcer/pathology , Disease Models, Animal , Hemolysin Proteins/genetics , Hemolysin Proteins/toxicity , Mass Spectrometry , Phenotype , Rabbits , Serine Endopeptidases/toxicity , Serine Proteases/genetics , Serine Proteases/toxicity , Staphylococcal Infections/pathology , Staphylococcus epidermidis/enzymology , Virulence
15.
Heredity (Edinb) ; 126(3): 410-423, 2021 03.
Article in English | MEDLINE | ID: mdl-33159183

ABSTRACT

The estimation of the inbreeding coefficient (F) is essential for the study of inbreeding depression (ID) or for the management of populations under conservation. Several methods have been proposed to estimate the realized F using genetic markers, but it remains unclear which one should be used. Here we used whole-genome sequence data for 245 individuals from a Holstein cattle pedigree to empirically evaluate which estimators best capture homozygosity at variants causing ID, such as rare deleterious alleles or loci presenting heterozygote advantage and segregating at intermediate frequency. Estimators relying on the correlation between uniting gametes (FUNI) or on the genomic relationships (FGRM) presented the highest correlations with these variants. However, homozygosity at rare alleles remained poorly captured. A second group of estimators relying on excess homozygosity (FHOM), homozygous-by-descent segments (FHBD), runs-of-homozygosity (FROH) or on the known genealogy (FPED) was better at capturing whole-genome homozygosity, reflecting the consequences of inbreeding on all variants, and for young alleles with low to moderate frequencies (0.10 < . < 0.25). The results indicate that FUNI and FGRM might present a stronger association with ID. However, the situation might be different when recessive deleterious alleles reach higher frequencies, such as in populations with a small effective population size. For locus-specific inbreeding measures or at low marker density, the ranking of the methods can also change as FHBD makes better use of the information from neighboring markers. Finally, we confirmed that genomic measures are in general superior to pedigree-based estimates. In particular, FPED was uncorrelated with locus-specific homozygosity.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Alleles , Animals , Cattle/genetics , Genotype , Homozygote , Pedigree
16.
Immun Ageing ; 17(1): 34, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33292350

ABSTRACT

BACKGROUND: Since the COVID-19 outbreak an unprecedented challenge for healthcare systems around the world has been placed. In Cuba, the first case of COVID-19 was reported on March 11. Elderly with multiple comorbidities have been the most risky population. Although most patients present a mild to moderate disease, some have developed severe symptoms. One of the possible mechanisms underlying rapid disease progression is a cytokine storm, in which interleukin (IL) -6 seems to be a major mediator. Itolizumab is a humanized recombinant anti-CD6 monoclonal antibody (MAb), with the ability of reducing serum interferon gamma (INF-γ), tumour necrosis factor alpha (TNFα) and IL-6. Based on these previous results in patients with psoriasis and rheumatoid arthritis, an expanded access clinical trial was approved by the Cuban regulatory agency for COVID-19 critically, severely and moderately ill patients. RESULTS: We show here a short kinetic of IL-6 serum concentration in the first 24 COVID-19 patients treated with itolizumab. Most of patients were elderly with multiple comorbidities. We found that with one itolizumab dose, the circulating IL-6 decreased in critically and severely ill patients, whereas in moderately ill patients the values didn't rise as compared to their low baseline levels. CONCLUSION: These findings suggest that itolizumab could be an attractive therapeutic option to decrease the negative outcome of the cytokine storm in COVID-19 patients. TRIAL REGISTRATION: CECMED IIC RD-EC 179, RPCEC00000311. Registered 4 May 2020 - Retrospectively registered, http://rpcec.sld.cu/ensayos/RPCEC00000311-Sp or http://rpcec.sld.cu/trials/RPCEC00000311-En.

17.
Clin Transl Immunology ; 9(11): e1218, 2020.
Article in English | MEDLINE | ID: mdl-33304584

ABSTRACT

OBJECTIVES: COVID-19 can lead to a hyperinflammatory state. CD6 is a glycoprotein expressed on mature T lymphocytes which is a crucial regulator of the T-cell activation. Itolizumab is a humanised antibody targeting CD6. Nonclinical and clinical data in autoimmune diseases indicate that it lowers multiple cytokines primarily involving the Th1/Th17 pathway. The primary objective of this study was to assess the impact of itolizumab in arresting the lung function deterioration of COVID-19 patients. Secondary objectives included safety, duration of ventilation, 14-day mortality and evaluation of interleukin 6 concentration. METHODS: Patients with confirmed SARS-CoV-2 received itolizumab in combination with other therapies included in the national protocol for COVID-19. RESULTS: Seventy critical, severe or moderate patients were treated with itolizumab in 10 Cuban hospitals. Median age was 68, and 94% had comorbidities. After 72 h, most patients improved the PO2/FiO2 ratio and reduced FiO2 requirements. Ventilation time was 8 days for critical and 1 day for severe cases. Ten patients had related adverse events while 3 subjects developed related serious events. In 30 patients, interleukin 6 decreased in individuals with high level and did not change in those with lower concentration. Fourteen-day lethality rate was 4% and 18% for moderate and severe patients, respectively. The proportion of moderate or severe patients with ventilation or death at day 14 was 9.8%. Time to treatment, neurological manifestations and biomarkers such as NLR were significantly associated with higher lethality. CONCLUSIONS: The opportune administration of itolizumab might interrupt the hyperinflammatory cascade and prevent COVID-19 morbidity and mortality.

18.
Gerontology ; 66(6): 553-561, 2020.
Article in English | MEDLINE | ID: mdl-33105142

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a recent outbreak of coronavirus disease (COVID-19). In Cuba, the first case of COVID-19 was reported on March 11, 2020. Elderly individuals with multiple comorbidities are particularly susceptible to adverse clinical outcomes in the course of SARS-CoV-2 infection. During the outbreak, a local transmission event took place in a nursing home in Villa Clara province, Cuba, in which 19 elderly residents tested positive for SARS-CoV-2. METHODS: Based on the increased susceptibility to cytokine release syndrome, inducing respiratory and systemic complications in this population, 19 patients were included in an expanded access clinical trial to receive itolizumab, an anti-CD6 monoclonal antibody. RESULTS: All patients had underlying medical conditions. The product was well tolerated. After the first dose, the course of the disease was favorable, and 18 of the 19 patients (94.7%) were discharged clinically recovered with negative real-time reverse transcription polymerase chain reaction test results at 13 days. After one dose of itolizumab, circulating IL-6 decreased within the first 24-48 h in patients with high baseline values, whereas in patients with low levels, this concentration remained over low values. To preliminarily assess the effect of itolizumab, a control group was selected among the Cuban COVID-19 patients that did not receive immunomodulatory therapy. The control subjects were well matched regarding age, comorbidities, and severity of the disease. The percentage of itolizumab-treated, moderately ill patients who needed to be admitted to the intensive care unit was only one-third of that of the control group not treated with itolizumab. Additionally, treatment with itolizumab reduced the risk of death 10 times as compared with the control group. CONCLUSION: This study corroborates that the timely use of itolizumab in combination with other antivirals reduces COVID-19 disease worsening and mortality. The humanized antibody itolizumab emerges as a therapeutic alternative for patients with COVID-19. Our results suggest the possible use of itolizumab in patients with cytokine release syndrome from other pathologies.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , COVID-19 Drug Treatment , Aged , Aged, 80 and over , Cuba , Female , Humans , Male , Middle Aged , SARS-CoV-2/drug effects
19.
Mol Biol Evol ; 37(12): 3642-3653, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32642779

ABSTRACT

Inferring changes in effective population size (Ne) in the recent past is of special interest for conservation of endangered species and for human history research. Current methods for estimating the very recent historical Ne are unable to detect complex demographic trajectories involving multiple episodes of bottlenecks, drops, and expansions. We develop a theoretical and computational framework to infer the demographic history of a population within the past 100 generations from the observed spectrum of linkage disequilibrium (LD) of pairs of loci over a wide range of recombination rates in a sample of contemporary individuals. The cumulative contributions of all of the previous generations to the observed LD are included in our model, and a genetic algorithm is used to search for the sequence of historical Ne values that best explains the observed LD spectrum. The method can be applied from large samples to samples of fewer than ten individuals using a variety of genotyping and DNA sequencing data: haploid, diploid with phased or unphased genotypes and pseudohaploid data from low-coverage sequencing. The method was tested by computer simulation for sensitivity to genotyping errors, temporal heterogeneity of samples, population admixture, and structural division into subpopulations, showing high tolerance to deviations from the assumptions of the model. Computer simulations also show that the proposed method outperforms other leading approaches when the inference concerns recent timeframes. Analysis of data from a variety of human and animal populations gave results in agreement with previous estimations by other methods or with records of historical events.


Subject(s)
Genetic Techniques , Linkage Disequilibrium , Models, Genetic , Population Density , Recombination, Genetic , Algorithms , Animals , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...