Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901829

ABSTRACT

Modulation of the CXCL12-CXCR4 signaling axis is of the utmost importance due to its central involvement in several pathological disorders, including inflammatory diseases and cancer. Among the different currently available drugs that inhibit CXCR4 activation, motixafortide-a best-in-class antagonist of this GPCR receptor-has exhibited promising results in preclinical studies of pancreatic, breast, and lung cancers. However, detailed information on the interaction mechanism of motixafortide is still lacking. Here, we characterize the motixafortide/CXCR4 and CXCL12/CXCR4 protein complexes by using computational techniques including unbiased all-atom molecular dynamics simulations. Our microsecond-long simulations of the protein systems indicate that the agonist triggers changes associated with active-like GPCR conformations, while the antagonist favors inactive conformations of CXCR4. Detailed ligand-protein analysis indicates the importance of motixafortide's six cationic residues, all of which established charge-charge interactions with acidic CXCR4 residues. Furthermore, two synthetic bulky chemical moieties of motixafortide work in tandem to restrict the conformations of important residues associated with CXCR4 activation. Our results not only elucidate the molecular mechanism by which motixafortide interacts with the CXCR4 receptor and stabilizes its inactive states, but also provide essential information to rationally design CXCR4 inhibitors that preserve the outstanding pharmacological features of motixafortide.


Subject(s)
Antineoplastic Agents , Receptors, CXCR4 , Receptors, CXCR4/metabolism , Protein Binding , Peptides/metabolism , Chemokine CXCL12/metabolism
2.
Front Chem ; 10: 920661, 2022.
Article in English | MEDLINE | ID: mdl-35910732

ABSTRACT

The anandamide is a relevant ligand due to its capacity of interacting with several proteins, including the T-type calcium channels, which play an important role in neuropathic pain and depression disorders. Hence, a detailed characterization of the chemical properties and conformational stability of anandamide may provide valuable information to understand its behavior in a biological context. Herein, conceptual DFT and QTAIM analyses were performed to theoretically characterize the chemical reactivity properties and the structural stability of conformations of anandamide, using the BP86/cc-pVTZ level of theory. Global reactivity description, based on conceptual DFT, indicates that the hardness increases and the electrophilicity index decreases for both, the hairpin and U-shape conformers relative to the extended conformers. Also, an increase in the chemical potential value and a decrease in the electronegativity and the electrophilicity index is observed in the ethanolamide open ring conformers in comparison with the corresponding closed ring structures. In addition, regarding the characterization of local reactivity descriptors, the maximum values of the Fukui and Parr functions indicate that the most probable location for a nucleophilic attack is either the hydroxyl oxygen located in the ethanolamide closed ring conformers or the carbonyl oxygen present in the open ring conformers. The most probable location for an electrophilic attack is in the alkyl double bond region in all anandamide conformers. According to the QTAIM results, the intramolecular hydrogen bond formation stabilizing the structure of anandamide has interaction energy values for the closed ring conformations of 12.33-12.46 kcal mol-1, indicating a strong interaction. Lastly, molecular docking calculations determined that a region in the pore, denominate as pore-blocking, is a probable site for the interaction of anandamide with the human Cav3.2 isoform of the T-type calcium channel family. The pore-blocking site contains hydrophobic residues where the non-polar part in the final alkyl region of anandamide established mainly alkyl-alkyl interactions, while the polar part (the ethanolamide group) interacts with the polar residue S900. The information based on conceptual DFT presented may aid in the design of drugs with similar chemical characteristics as those identified in anandamide so as to bind anandamide-interacting proteins, including the T-type calcium channels.

3.
Molecules ; 27(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35056729

ABSTRACT

The cannabinoid receptors (CB1/CB2) and the T-type calcium channels are involved in disorders associated with both physiological pain and depressive behaviors. Valuable pharmacological species carbazole derivatives such as the NMP-4, NMP-7, and NMP-181 (Neuro Molecular Production) regulate both biological entities. In this work, DFT calculations were performed to characterize theoretically their structural and chemical reactivity properties using the BP86/cc-pVTZ level of theory. The molecular orbital contributions and the chemical reactivity analysis reveal that a major participation of the carbazole group is in the donor-acceptor interactions of the NMP compounds. The DFT analysis on the NMP compounds provides insights into the relevant functional groups involved during the ligand-receptor interactions. Molecular docking analysis is used to reveal possible sites of interaction of the NMP compounds with the Cav3.2 calcium channel. The interaction energy values and reported experimental evidence indicate that the site denominated as "Pore-blocking", which is formed mainly by hydrophobic residues and the T586 residue, is a probable binding site for the NMP compounds.


Subject(s)
Molecular Docking Simulation
4.
ACS Chem Neurosci ; 12(4): 651-659, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33507062

ABSTRACT

Regulation of cellular excitability and oscillatory behavior of resting membrane potential in nerve cells are largely mediated by the low-voltage activated T-type calcium channels. This calcium channel family is constituted by three isoforms, namely, CaV3.1, CaV3.2, and CaV3.3, that are largely distributed in the nervous system and other parts of the body. Dysfunction of T-type calcium channels is associated with a wide range of pathophysiologies including epilepsy, neuropathic pain, cardiac problems, and major depressive disorders. Due to their pharmacological relevance, finding molecular agents able to modulate the channel's function may provide therapeutic means to ameliorate their related disorders. Here we used electrophysiological experiments to show that genistein, a canonical tyrosine kinase inhibitor, reduces the activity of the human CaV3.3 channel in a concentration-dependent manner. The inhibitory effect of genistein is independent of tyrosine kinase modulation and does not affect the voltage-dependent gating of the channel. Subsequently, we used computational methods to identify plausible molecular poses for the interaction of genistein and the CaV3.3 channel. Starting from different molecular poses, we carried out all-atom molecular dynamics (MD) simulations to identify the interacting determinants for the CaV3.3/genistein complex formation. Our extensive (microsecond-length) simulations suggest specific binding interactions that seem to stabilize the protein/inhibitor complex. Furthermore, our results from the unbiased MD simulations are in good agreement with the recently solved cryoelectron microscopy structure of the CaV3.1/Z944 complex in terms of both the location of the ligand binding site and the role of several equivalent amino acid residues. Proposed interacting complex loci were subsequently tested and corroborated by electrophysiological experiments using another naturally occurring isoflavone derivative, daidzein. Thus, by using a combination of in vitro and in silico techniques, we have identified interacting determinants relevant to the CaV3.3/genistein complex formation and propose that genistein directly blocks the function of the human CaV3.3 channel as a result of such interaction. Specifically, we proposed that a combination of polar interactions involving the three hydroxyl groups of genistein and an aromatic interaction with the fused rings are the main binding interactions in the complex formation. Our results pave the way for the rational development of improved and novel low-voltage activated T-type calcium channel inhibitors.


Subject(s)
Calcium Channels, T-Type , Depressive Disorder, Major , Isoflavones , Cryoelectron Microscopy , Genistein/pharmacology , Humans
5.
J Inorg Biochem ; 203: 110862, 2020 02.
Article in English | MEDLINE | ID: mdl-31683130

ABSTRACT

Photodynamic therapy (PDT) is an alternative treatment widely used against cancer. PDT requires molecular systems, known as photosensitizers (PS), which not only exhibit strong absorption at a particular wavelength range, but also need to be selectively accumulated inside cancer cells. PS are activated by specific wavelengths that cause tumor cell death by mechanisms related with oxidative stress. In this paper, three oxidovanadium(V) complexes linked to a Schiff base, which exhibit anticancer activity by displaying desirable accumulation inside malignant cells, are studied using Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) methodologies to characterize their structural and photophysical properties as possible PS. The maximum absorption of these complexes in aqueous solution was predicted to be approximately 460 nm presenting a ligand-to-metal charge transfer. Additionally, we describe the photodynamic type reaction that these complexes can undergo when considered as PS candidates. Our results suggest that the system, containing triethylammonium as substituent, is the most suitable complex to act both as PS and as a possible therapeutic candidate in PDT.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Photosensitizing Agents/chemistry , Schiff Bases/chemistry , Density Functional Theory , Models, Chemical , Vanadium/chemistry
6.
J Mol Model ; 25(8): 229, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31321557

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disorder associated with the aggregation of the amyloid-beta peptide (Aß) into large oligomers and fibrils that damage healthy brain cells. The predominant peptide fragments in the plaques are mainly formed by the Aß1-40 and Aß1-42 peptides, albeit the eleven-residue Aß25-35 segment is largely used in biological studies because it retains the neurotoxic properties of the longer Aß peptides. Recent studies indicate that treatment with therapeutic steroid hormones reduces the progress of the disease in AD models. Particularly, treatment with 17ß-aminoestrogens (AEs) has shown a significant alleviation of the AD development by inhibiting oxidative stress and neuronal death. Yet, the mechanism by which the AE molecules exhibit their beneficial effects remains speculative. To shed light into the molecular mechanism of inhibition of the AD development by AEs, we investigated the possibility of direct interaction with the Aß25-35 peptide. First, we calculate various interacting electronic properties of three AE derivatives as follows: prolame, butolame, and pentolame by performing DFT calculations. To account for the polymorphic nature of the Aß aggregates, we considered four different Aß25-35 systems extracted from AD relevant fibril structures. From the calculation of different electron density properties, specific interacting loci were identified that guided the construction and optimization of various complexes. Interestingly, the results suggest a similar inhibitory mechanism based on the direct interaction between the AEs and the M35 residue that seems to be general and independent of the polymorphic properties of the Aß aggregates. Our analysis of the complex formation provides a structural framework for understanding the AE therapeutic properties in the molecular inhibitory mechanism of Aß aggregation.


Subject(s)
Amyloid beta-Peptides/chemistry , Estrogens/pharmacology , Protein Aggregates , Amino Alcohols/chemistry , Amino Alcohols/pharmacology , Estrenes/chemistry , Estrenes/pharmacology , Estrogens/chemistry , Models, Molecular , Protein Aggregates/drug effects , Static Electricity
7.
J Phys Chem A ; 116(24): 6127-33, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22339496

ABSTRACT

Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with methyl crotonate and ethyl crotonate have been determined at 298 K and atmospheric pressure. The decay of the organics was monitored using gas chromatography with flame ionization detection (GC-FID), and the rate constants were determined using the relative rate method with different reference compounds. Room temperature rate coeficcients were found to be (in cm(3) molecule(-1) s(-1)): k(1)(OH + CH(3)CH═CHC(O)OCH(3)) = (4.65 ± 0.65) × 10(-11), k(2)(Cl + CH(3)CH═CHC(O)OCH(3)) = (2.20 ± 0.55) × 10(-10), k(3)(OH + CH(3)CH═CHC(O)OCH(2)CH(3)) = (4.96 ± 0.61) × 10(-11), and k(4)(Cl + CH(3)CH═CHC(O)OCH(2)CH(3)) = (2.52 ± 0.62) × 10(-10) with uncertainties representing ±2σ. This is the first determination of k(1), k(3), and k(4) under atmospheric pressure. The rate coefficients are compared with previous determinations for other unsaturated and oxygenated VOCs and reactivity trends are presented. In addition, a comparison between the experimentally determined k(OH) with k(OH) predicted from k vs E(HOMO) relationships is presented. On the other hand, product identification under atmospheric conditions has been performed for the first time for these unsaturated esters by the GC-MS technique in NO(x)-free conditions. 2-Hydroxypropanal, acetaldehyde, formaldehyde, and formic acid were positively observed as degradation products in agreement with the addition of OH to C2 and C3 of the double bond, followed by decomposition of the 2,3- or 3,2-hydroxyalkoxy radicals formed. Atmospheric lifetimes, based on of the homogeneous sinks of the unsaturated esters studied, are estimated from the kinetic data obtained in the present work.


Subject(s)
Chlorine/chemistry , Crotonates/chemistry , Hydroxyl Radical/chemistry , Atmospheric Pressure , Gases/chemistry , Kinetics , Molecular Structure , Oxidation-Reduction , Temperature
8.
J Mol Model ; 13(5): 579-86, 2007 May.
Article in English | MEDLINE | ID: mdl-17340113

ABSTRACT

We present a molecular docking study aimed to identify the binding site of protonated aminopyridines for the blocking of voltage dependent K(+) channels. Several active aminopyridines are considered: 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 3,4-diaminopyridine, and 4-aminoquinoleine. We apply the AutoDock force field with a lamarckian genetic algorithm, using atomic charges for the ligands derived from the electrostatic potential obtained at the B3LYP/cc-pVDZ level. We find a zone in the alpha-subunit of the K(+) channel bearing common binding sites. This zone corresponds to five amino acids comprised between residuals Thr107 and Ala111, in the KcsA K(+) channel (1J95 pdb structure). The 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, and 3,4-diaminopyridine bind to the carboxylic oxygens of Thr107 and Ala111. In all cases aminopyridines are perpendicular to the axis of the pore. 4-aminoquinoleine binds to the carboxylic oxygen of Ala111. Due to its large size, the molecular plane is parallel to the axis of the pore. The charge distributions and the structures of the binding complexes suggest that the interaction is driven by formation of several hydrogen bonds. We find 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, and 3,4-diaminopyridine with similar binding energy. Considering the standard error of the estimate of the AutoDock force field, this energy should lie, as a rough estimation, in the interval 3-7 kcal mol(-1). On the other hand, 4-aminoquinoleine seems to have a smaller binding energy.


Subject(s)
Aminopyridines/chemistry , Aminopyridines/metabolism , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Hydrogen-Ion Concentration , Potassium Channels/chemistry , Potassium Channels/metabolism , Protein Binding , Protein Structure, Secondary , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...