Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(8): 080601, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35275654

ABSTRACT

Quantum matter at ultralow temperatures offers a test bed for analyzing and controlling desired properties in strongly correlated systems. Under typical conditions the nature of the atoms fixes the magnetic character of the system. Beyond classical light potentials leading to optical lattices and short-range interactions, high-Q cavities introduce novel dynamics into the system via the quantumness of light. Here we propose a theoretical model and we analyze it using exact diagonalization and density matrix renormalization group simulations. We explore the effects of cavity mediated long-range magnetic interactions and optical lattices in ultracold matter. We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios. Antiferromagnetic correlated bosonic matter emerges in conditions beyond what nature typically provides. These allow new alternatives toward the design of robust mechanisms for quantum information purposes, exploiting the properties of magnetic phases of strongly correlated quantum matter.

2.
Sci Rep ; 10(1): 10550, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32601416

ABSTRACT

Feedback is a general idea of modifying system behavior depending on the measurement outcomes. It spreads from natural sciences, engineering, and artificial intelligence to contemporary classical and rock music. Recently, feedback has been suggested as a tool to induce phase transitions beyond the dissipative ones and tune their universality class. Here, we propose and theoretically investigate a system possessing such a feedback-induced phase transition. The system contains a Bose-Einstein condensate placed in an optical potential with the depth that is feedback-controlled according to the intensity of the Bragg-reflected probe light. We show that there is a critical value of the feedback gain where the uniform gas distribution loses its stability and the ordered periodic density distribution emerges. Due to the external feedback, the presence of a cavity is not necessary for this type of atomic self-organization. We analyze the dynamics after a sudden change of the feedback control parameter. The feedback time constant is shown to determine the relaxation above the critical point. We show as well that the control algorithm with the derivative of the measured signal dramatically decreases the transient time.

3.
Sci Rep ; 9(1): 11049, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31363111

ABSTRACT

We investigate the effects of disorder and lattice geometry against localisation phenomena in a weakly interacting ultracold bosonic gas confined in a 2D optical lattice. The behaviour of the quantum fluid is studied at the mean-field level performing computational experiments, as a function of disorder strength for lattices of sizes similar to current experiments. Quantification of localisation, away from the Bose glass phase, was obtained directly from the stationary density profiles through a robust statistical analysis of the condensate component, as a function of the disorder amplitude. Our results show a smooth transition, or crossover, to localisation induced by disorder in square and triangular lattices. In contrast, associated to its larger tunneling amplitude, honeycomb lattices show absence of localisation for the same range of disorder strengths and same lattice amplitude, while also exhibiting partial localisation for large disorder amplitudes. We also conclude that the coordination number z have a partial influence on how fast this smooth transition occurs as the system size increases. Signatures of disorder are also found in the ground state energy spectrum, where a continuous distribution emerges instead of a distribution of sharp peaks proper to the system in the absence of disorder.

4.
Sci Rep ; 7: 42597, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225012

ABSTRACT

A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system's own evolution.

5.
Sci Rep ; 6: 31196, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27510369

ABSTRACT

Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.

6.
Phys Rev Lett ; 115(24): 243604, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705634

ABSTRACT

Confining ultracold gases in cavities creates a paradigm of quantum trapping potentials. We show that this allows us to bridge models with global collective and short-range interactions as novel quantum phases possess properties of both. Some phases appear solely due to quantum light-matter correlations. Because of a global, but spatially structured, interaction, the competition between quantum matter and light waves leads to multimode structures even in single-mode cavities, including delocalized dimers of matter-field coherences (bonds), beyond density orders as supersolids and density waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...