Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(2): 591-600, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31850752

ABSTRACT

New drugs that target Plasmodium species, the causative agents of malaria, are needed. The enzyme N-myristoyltransferase (NMT) is an essential protein, which catalyzes the myristoylation of protein substrates, often to mediate membrane targeting. We screened ∼1.8 million small molecules for activity against Plasmodium vivax (P. vivax) NMT. Hits were triaged based on potency and physicochemical properties and further tested against P. vivax and Plasmodium falciparum (P. falciparum) NMTs. We assessed the activity of hits against human NMT1 and NMT2 and discarded compounds with low selectivity indices. We identified 23 chemical classes specific for the inhibition of Plasmodium NMTs over human NMTs, including multiple novel scaffolds. Cocrystallization of P. vivax NMT with one compound revealed peptide binding pocket binding. Other compounds show a range of potential modes of action. Our data provide insight into the activity of a collection of selective inhibitors of Plasmodium NMT and serve as a starting point for subsequent medicinal chemistry efforts.


Subject(s)
Acyltransferases/antagonists & inhibitors , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Plasmodium/drug effects , Plasmodium/enzymology , Acyltransferases/chemistry , Animals , Binding Sites , Cell Line , Crystallography, X-Ray , Drug Discovery , High-Throughput Screening Assays , Humans , Malaria/drug therapy , Models, Molecular , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Small Molecule Libraries , Structure-Activity Relationship
2.
Sci Rep ; 7(1): 10806, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883402

ABSTRACT

The peptide hormone human relaxin-2 (H2-RLX) has emerged as a potential therapy for cardiovascular and fibrotic diseases, but its short in vivo half-life is an obstacle to long-term administration. The discovery of ML290 demonstrated that it is possible to identify small molecule agonists of the cognate G-protein coupled receptor for H2-RLX (relaxin family peptide receptor-1 (RXFP1)). In our efforts to generate a new medicine for liver fibrosis, we sought to identify improved small molecule functional mimetics of H2-RLX with selective, full agonist or positive allosteric modulator activity against RXFP1. First, we confirmed expression of RXFP1 in human diseased liver. We developed a robust cellular cAMP reporter assay of RXFP1 signaling in HEK293 cells transiently expressing RXFP1. A high-throughput screen did not identify further specific agonists or positive allosteric modulators of RXFP1, affirming the low druggability of this receptor. As an alternative approach, we generated novel ML290 analogues and tested their activity in the HEK293-RXFP1 cAMP assay and the human hepatic cell line LX-2. Differences in activity of compounds on cAMP activation compared with changes in expression of fibrotic markers indicate the need to better understand cell- and tissue-specific signaling mechanisms and their disease-relevant phenotypes in order to enable drug discovery.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Enzyme Activators/isolation & purification , Liver Cirrhosis/drug therapy , Receptors, G-Protein-Coupled/agonists , Receptors, Peptide/agonists , Biopsy , Cells, Cultured , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacology , High-Throughput Screening Assays , Humans , Liver Cirrhosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...