Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 118(41): 9675-86, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25233377

ABSTRACT

UV resonance Raman scattering is uniquely sensitive to the molecular electronic structure as well as intermolecular interactions. To better understand the relationship between electronic structure and resonance Raman cross section, we carried out combined experimental and theoretical studies of neutral tyrosine and the tyrosinate anion. We studied the Raman cross sections of four vibrational modes as a function of excitation wavelength, and we analyzed them in terms of the contributions of the individual electronic states as well as of the Albrecht A and B terms. Our model, which is based on time-dependent density functional theory (TDDFT), reproduced the experimental resonance Raman spectra and Raman excitation profiles for both studied molecules with good agreement. We found that for the studied modes, the contributions of Albrecht's B terms in the Raman cross sections were important across the frequency range spanning the L(a,b) and B(a,b) electronic excitations in tyrosine and the tyrosinate anion. Furthermore, we demonstrated that interference with high-energy states had a significant impact and could not be neglected even when in resonance with a lower-energy state. The symmetry of the vibrational modes served as an indicator of the dominance of the A or B mechanisms. Excitation profiles calculated with a damping constant estimated from line widths of the electronic absorption bands had the best consistency with experimental results.


Subject(s)
Anions/chemistry , Spectrum Analysis, Raman , Tyrosine/chemistry , Computer Simulation , Models, Molecular , Molecular Structure , Vibration
2.
J Phys Chem A ; 115(33): 9139-50, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21751780

ABSTRACT

Vibrational overtone spectroscopy is a powerful tool for studying intramolecular and intermolecular interactions. We report on a combined experimental and modeling study of the C-H stretch first overtone of bulk 1,3,5-trinitrotoluene (TNT) and TNT on fumed-silica powder. We recorded the overtone spectra by laser photoacoustic spectroscopy and compared them with those predicted with the harmonically coupled anharmonic oscillator model in the 5600-6600 cm(-1) region. The model systems included single molecules and hybrid quantum and molecular mechanical (QM:MM) clusters to account for the effects of intermolecular interactions on the observed spectra. We performed the hybrid QM:MM calculations at the HF/6-31+G(d,p), B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) levels of theory and with the universal force field (UFF) to account for van der Waals and electrostatic effects from surrounding molecules. Overtone spectra calculated from the MP2 level of theory, using a HF/3-21+G* calculation to assign molecular charges in the MM layer, and the Merz-Singh-Kollman population analysis for assigning partial charge in the QM layer and determining the transition dipole moment agreed best with the experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...