Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 42(5): 1408-15, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18441781

ABSTRACT

The effects of fallow agriculture on soil organic matter (SOM) dynamics and CO2 emissions were assessed in the tropical Andean páramo ecosystem. Possible changes during the cultivation-fallow cycle were monitored in four areas of the Quebrada Piñuelas valley (Venezuela). Uncultivated soils and plots at different stages of a complete cultivation--fallow cycle were incubated, and SOM mineralization kinetics was determined. Soils exhibited a low SOM mineralization activity, total CO2 evolved never reaching 3% of soil carbon, pointing to a stabilized SOM. Potential soil CO2 effluxes differed significantly according to their plot aspect: northeast (NE)-aspect soils presented higher CO2 effluxes than southwest (SW)-aspect soils. Soil CO2 emissions decreased after ploughing as compared to virgin páramo; low CO2 effluxes were still observed during cropping periods, increasing progressively to reach the highest values after 4-5 y of fallow. In all cases, experimental C mineralization data was fitted to a double exponential kinetic model. High soil labile C pool variability was observed, and two different trends were identified: NE-oriented soils showed more labile C and a wider range of values than SW-facing soils. Labile C positively correlated with CO2 effluxes and negatively with its instantaneous mineralization rate. The instantaneous mineralization rate of the recalcitrant C pool positively correlated with %C evolved as CO2 and negatively with soil C and Al2O3 contents, suggesting the importance of aluminum on SOM stability. The CO2 effluxes from these ecosystems, as well as the proportion of soil C released to the atmosphere, seem to depend not only on the size of the labile C pool but also on the accessibility of the more stabilized SOM. Therefore, fallow agriculture produces moderate changes in SOM quality and temporarily alters the CO2 emission capacity of these soils.


Subject(s)
Agriculture , Carbon Dioxide/analysis , Ecosystem , Soil Pollutants/analysis , Venezuela
2.
Environ Sci Technol ; 40(8): 2552-8, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16683591

ABSTRACT

Soil CO2 effluxes from recently added 13C-labeled phytomass versus endogenous soil organic matter (SOM) were studied in an acid soil from Atlantic pine forests (NW Spain). After several cultures to incorporate fresh 13C-enriched Lolium perenne to a Humic Cambisol with predominance of humus--Al over humus--Fe complexes, potential soil C mineralization was determined by laboratory aerobic incubation (84 days). Isotopic 13C analyses of SOM fractions were assessed to know in which organic compartments the 13C was preferentially incorporated. Although in the 13C-labeled soil the C mineralization coefficient totalized less than 3% of soil C, the 13C mineralization coefficient exceeded 14%, indicating a greater lability of the newly incorporated organic matter. Organic compounds coming from added phytomass showed a higher lability and contributed considerably to the total soil CO2 effluxes (52% of total soil CO2 evolved during the first decomposition stages and 27% at the end), even though added-C comprised less than 4% of total soil C. Good determination coefficients, when values of CO2--C released were fitted to a first-order double exponential kinetic model, support the existence of two C pools of different lability. Kinetic parameters obtained with this model indicated that phytomass addition augmented the biodegradability of the labile pool (instantaneous mineralization rate k increased from 0.07 d(-1) to 0.12 d(-1)) but diminished that of the recalcitrant pool (instantaneous mineralization rate h decreased from 2.7 x 10(-4) d(-1) to 1.6 x 10(-4) d(-1)). Consequently, the differentiation between both SOM pools increased, showing the importance of SOM quality on CO2 emissions from this kind of soil to the atmosphere.


Subject(s)
Carbon Dioxide/analysis , Aluminum/analysis , Aluminum/chemistry , Benzopyrans/analysis , Carbon Isotopes , Humic Substances/analysis , Iron/analysis , Iron/chemistry , Lolium , Pinus , Soil/analysis , Trees
3.
Rapid Commun Mass Spectrom ; 19(22): 3199-206, 2005.
Article in English | MEDLINE | ID: mdl-16208761

ABSTRACT

Pine forest plantations of Pinus pinaster Ait. and P. sylvestris L. located in Galicia, NW Spain, were selected to study the 13C/12C-isotopic fingerprint in wood core samples in order to find possible relationships between the delta(13)C at natural abundance levels and the quality of the standing tree mass. For each pine species, 24 forests growing on acidic soils were studied: half developed over granite and half over schists. Two dominant trees from each plot, corresponding to all possible combinations of forest stands with high or low site index and with adults or young trees, were drilled at the basal part of trunks using a Pressler drill to obtain tree ring samples. The C-isotopic compositions of the litter and the soil organic matter from different soil depths were also determined and statistically significant correlations between these values and the 13C content of the wood were observed. Despite internal variations due to the influence of site index, tree age and parent material, the isotopic fingerprint of P. pinaster wood (mean value delta13C=-26.2+/-0.8 per thousand) significantly differed (P<0.001) from that of P. sylvestris (mean value delta13C=-24.6+/-0.7 per thousand). Relationships between the quality of the stand and the C-isotopic composition of the wood were observed, high quality stands having trees more 13C-depleted than low quality ones. A high correlation between wood delta13C and site index values for P. pinaster stands (r=-0.667, P<0.001) was found, this correlation being even clearer when only P. pinaster growing over schists (r=-0.833, P<0.001) are considered. Again, the correlation between the site index and the wood delta13C of young P. pinaster trees is higher when plots over granite or schists are separately considered. A similar fact occurs for adult P. sylvestris trees from schists stands, high quality specimens being 13C-depleted compared with low quality ones. On the other hand, 13C natural abundance of wood from P. sylvestris trees seems to be also strongly influenced by the underlying parent material, young trees from granite stands having a statistically higher 13C-isotopic composition (P<0.05) than young trees from schists stands.


Subject(s)
Ecosystem , Pinus sylvestris/chemistry , Pinus/chemistry , Trees/physiology , Wood , Biomass , Body Weight , Calorimetry, Differential Scanning , Carbon Isotopes , Mass Spectrometry , Pinus/growth & development , Pinus sylvestris/growth & development , Soil/analysis , Spain , Thermogravimetry , Trees/chemistry
4.
Rapid Commun Mass Spectrom ; 18(4): 435-42, 2004.
Article in English | MEDLINE | ID: mdl-14966850

ABSTRACT

Soil organic matter (SOM) transformations caused by heating were analyzed using the stable carbon isotope (13)C as a tracer to follow C mineralization dynamics and C transfers between different organic compartments. A (13)C-labelled soil, obtained by incorporation of (13)C-enriched Lolium perenne phytomass into a pine forest soil, was heated for 10 min at 385 degrees C to reproduce conditions typical of a forest fire and changes in total C content, potential C mineralization activity and C distribution between the different soil organic fractions were determined. Changes caused by heating on the potential soil C mineralization, determined by laboratory aerobic incubation, reveal alterations to the SOM biodegradability; some stabilized SOM showed an increase in biodegradability, whereas less stabilized SOM became more resistant to microorganisms. Chemical fractionations of SOM allowed us to monitor changes in its composition. As a consequence of heating, the less polymerized humic fractions were the most strongly affected, with the total disappearance of fulvic acids. A significant increase in the quantity and degree of polymerization of the humic acids at the expense of other more (13)C-enriched substances was also found. Finally, a large decrease in humin was observed, its solubilizable part disappearing completely, probably as a consequence of the incorporation of the byproducts into the free organic matter fraction.


Subject(s)
Carbon/analysis , Carbon/metabolism , Fires , Hot Temperature , Pinus , Soil/analysis , Biodegradation, Environmental , Carbon/chemistry , Carbon Isotopes , Humic Substances , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...