Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Angew Chem Int Ed Engl ; : e202409731, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148147

ABSTRACT

The rising prospects of mechanochemically assisted syntheses hold promise for both academia and industry, yet they face challenges in understanding and, therefore, anticipating respective reaction kinetics. Particularly, dependencies based on variations in milling equipment remain little understood and globally overlooked. This study aims to address this issue by identifying critical parameters through kinematic models, facilitating the reproducibility of mechanochemical reactions across the most prominent mills in laboratory settings, namely planetary and mixer mills. Through a series of selected experiments replicating major classes of organic, organometallic, transition metal-catalyzed, and inorganic reactions from literature, we rationalize the independence of kinematic parameters on reaction kinetics when the accumulated energy criterion is met. As a step forward and to facilitate the practicability of our findings, we provide a freely accessible online tool† that allows the calculation of respective energy parameters for different planetary and mixer mills. Our work advances the current understanding of mechanochemistry and lays the foundation for future rational exploration in this rapidly evolving field.

2.
J Mater Chem B ; 12(33): 8107-8121, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39041337

ABSTRACT

As the field of preclinical research on photosensitizers (PSs) for anticancer photodynamic therapy (PDT) continues to expand, a focused effort is underway to develop agents with innovative molecular structures that offer enhanced targeting, selectivity, activation, and imaging capabilities. In this context, we introduce two new heavy-atom-free PSs, DBXI and DBAI, characterized by a twisted π-conjugation framework. This innovative approach enhances the spin-orbit coupling (SOC) between the singlet excited state (S1) and the triplet state (T1), resulting in improved and efficient intersystem crossing (ISC). Both PSs are highly effective in producing reactive oxygen species (ROS), including singlet oxygen and/or superoxide species. Additionally, they also demonstrate remarkably strong fluorescence emission. Indeed, in addition to providing exceptional photocytotoxicity, this emissive feature, generally lacking in other reported structures, allows for the precise monitoring of the PSs' distribution within specific cellular organelles even at nanomolar concentrations. These findings underscore the dual functionality of these PSs, serving as both fluorescent imaging probes and light-activated therapeutic agents, emphasizing their potential as versatile and multifunctional tools in the field of PDT.


Subject(s)
Optical Imaging , Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Humans , Reactive Oxygen Species/metabolism , Molecular Structure , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Survival/drug effects
3.
ChemSusChem ; : e202400903, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867402

ABSTRACT

The sulfoxide moiety is one of the most commonly utilized groups in pharmaceutical and industrial chemistry. The need for sustainability and easy accessibility to sulfoxide moieties is deemed necessary, due to its ubiquity in natural products and potentially pharmaceutically active compounds. In this context, we report herein a sustainable, aerobic and environmentally friendly photochemical protocol based on the use of a benzothioxathene imide as the photocatalyst to selectively oxidize sulfides under mild irradiation (456 nm), in very low catalyst loading (0.01 mol %) and on water. In addition, to demonstrate the compatibility of our protocol with wide scope of substrates, the latter was successfully applied to the synthesis of the biologically-active Sulforaphane and Modafinil.

4.
Chemistry ; 30(27): e202400191, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38498874

ABSTRACT

Controlling the formation of photoexcited triplet states is critical for many (photo)chemical and physical applications. Here, we demonstrate that a permanent out-of-plane distortion of the benzothioxanthene imide (BTI) dye promotes intersystem crossing by increasing spin-orbit coupling. This manipulation was achieved through a subtle chemical modification, specifically the bay-area methylation. Consequently, this simple yet efficient approach expands the catalog of known molecular engineering strategies for synthesizing heavy atom-free, dual redox-active, yet still emissive and synthetically accessible photosensitizers.

5.
Nucleic Acids Res ; 51(12): 6264-6285, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37191066

ABSTRACT

Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.


Subject(s)
G-Quadruplexes , Neoplasms , Photochemotherapy , Animals , DNA/metabolism , DNA Damage , DNA Replication , Genomic Instability , Neoplasms/genetics , Neoplasms/therapy , Oxidative Stress , Photosensitizing Agents/pharmacology , Zebrafish/genetics , Zebrafish/metabolism , Photochemotherapy/methods
6.
Chem Asian J ; 18(6): e202300014, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36752187

ABSTRACT

Produced at ton scale, vat dyes are major environmental pollutants generated by the textile industry. However, they represent ideal and accessible candidates for chemical upcycling since they are usually composed of large π-conjugated scaffolds. Based on the valorization of "old" products, waste or even contaminant into high-added value goods, this concept can be easily transposed to the laboratories. As a contribution to the current environmental and ecological transition, we demonstrate herein the valorization/upcycling of wastewaters generated during the dyeing procedure. To do so, the reduced (leuco) form of vat violet 10, also known as isoviolanthrone, was functionalized to afford a readily soluble derivative that was subsequently and successfully used as active material in operating solution processed light-emitting electrochemical cells, that is, from textile dyeing to high-tech application.

7.
Commun Chem ; 5(1): 142, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36697939

ABSTRACT

Photodynamic therapy is a clinically approved anticancer modality that employs a light-activated agent (photosensitizer) to generate cytotoxic reactive oxygen species (ROS). There is therefore a growing interest for developing innovative photosensitizing agents with enhanced phototherapeutic performances. Herein, we report on a rational design synthetic procedure that converts the ultrabright benzothioxanthene imide (BTI) dye into three heavy-atom-free thionated compounds featuring close-to-unit singlet oxygen quantum yields. In contrast to the BTI, these thionated analogs display an almost fully quenched fluorescence emission, in agreement with the formation of highly populated triplet states. Indeed, the sequential thionation on the BTI scaffold induces torsion of its skeleton reducing the singlet-triplet energy gaps and enhancing the spin-orbit coupling. These potential PSs show potent cancer-cell ablation under light irradiation while remaining non-toxic under dark condition owing to a photo-cytotoxic mechanism that we believe simultaneously involves singlet oxygen and superoxide species, which could be both characterized in vitro. Our study demonstrates that this simple site-selected thionated platform is an effective strategy to convert conventional carbonyl-containing fluorophores into phototherapeutic agents for anticancer PDT.

8.
J Phys Chem B ; 125(30): 8572-8580, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34291941

ABSTRACT

Singlet-triplet interconversions (intersystem crossing, ISC) in organic molecules are at the basis of many important processes in cutting-edge photonic applications (organic light-emitting devices, photodynamic therapy, etc.). Selection rules for these transitions are mainly governed by the spin-orbit coupling (SOC) phenomenon. Although the SOC relies on complex relativistic phenomena, theoreticians have, with time, developed increasingly sophisticated and efficient approaches to gain access to a satisfactory evaluation of its magnitude. However, recent works have highlighted the remarkable and somehow unexpected efficiency of dimers of small conjugated molecules in terms of ISC quantum yields, whose origin has not been completely investigated. In this work, we bring a coupled experimental and theoretical analysis of the origin of the unusually large ISC efficiency on a series of such dimers that differ by their nature (covalent or supramolecular). We show that considering the dynamical nature of the SOC, and especially its dependence on angular orientations between the dimer subunits sometimes overlooked in the literature, it is necessary to rationalize some counterintuitive experimental observations. This combined experimental and theoretical work paves the way for new molecular engineering rules for SOC control.


Subject(s)
Photochemotherapy , Dimerization
9.
ChemSusChem ; 14(17): 3622-3631, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34111333

ABSTRACT

Organic solar cells are approaching power conversion efficiencies of other thin-film technologies. However, in order to become truly market competitive, the still substantial voltage losses need to be reduced. Here, the synthesis and characterization of four novel arylamine-based push-pull molecular donors was described, two of them exhibiting a methyl group at the para-position of the external phenyl ring of the arylamine block. Assessing the charge-transfer state properties and the effects of methylation on the open-circuit voltage of the device showed that devices based on methylated versions of the molecular donors exhibited reduced voltage losses due to decreased non-radiative recombination. Modelling suggested that methylation resulted in a tighter interaction between donor and acceptor molecules, turning into a larger oscillator strength to the charge-transfer states, thereby ensuing reduced non-radiative decay rates.

10.
J Org Chem ; 86(8): 5901-5907, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33793231

ABSTRACT

The pallado-catalyzed cyanation of benzothioxanthene imide (BTXI) derivatives is explored herein. Once optimized on the monobromo BTXI, mild reaction conditions were successfully applied to the dibromo derivative affording two regioisomers that have been isolated and structurally solved. Additional hydrogen-deuterium exchange experiments were carried out to support a proposed mechanism involving the formation of a five-membered palladacycle intermediate in the bay area. As well as impacting the structural, photo physical and electrochemical properties of the BTXI core, nitrile moieties were successfully used as orthogonal protecting groups, thus opening doors to new design principles.


Subject(s)
Nitriles , Palladium , Catalysis , Hydrogen
11.
Opt Lett ; 46(4): 845-848, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33577526

ABSTRACT

Second-order nonlinear optics is the base for a large variety of devices aimed at the active manipulation of light. However, physical principles restrict its occurrence to non-centrosymmetric, anisotropic matter. This significantly limits the number of base materials exhibiting nonlinear optics. Here, we show that embedding chromophores in an array of conical channels 13 nm across in monolithic silica results in mesoscopic anisotropic matter and thus in a hybrid material showing second-harmonic generation. This nonlinear optics is compared to the one achieved in corona-poled polymer films containing the identical chromophores. It originates in the confinement-induced orientational order of the elongated guest molecules in the nanochannels. This leads to a non-centrosymmetric dipolar order and hence to a nonlinear light-matter interaction on the sub-wavelength, single-pore scale. Our study demonstrates that the advent of large-scale, self-organized nanoporosity in monolithic solids along with the confinement-controllable orientational order of chromophores at the single-pore scale provides a reliable and accessible tool to design materials with a nonlinear meta-optics.

12.
Chem Commun (Camb) ; 56(70): 10131-10134, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32812572

ABSTRACT

The synthesis of benzothioxanthene imide based dimers is reported herein. Subtle chemical modifications were carried out and their impact on the optical and electrochemical properties was investigated for a better structure-property relationship analysis. The icing on the cake was that these new structures were used as light emitting materials for the fabrication and demonstration of the first BTXI-based OLEDs.

13.
Chemistry ; 26(69): 16422-16433, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32701173

ABSTRACT

π-Conjugated push-pull molecules based on triphenylamine and 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) have been functionalized with different terminal arene units. In solution, these highly TCBD-twisted systems showed a strong internal charge transfer band in the visible spectrum and no detectable photoluminescence (PL). Photophysical and theoretical investigations revealed very short singlet excited state deactivation time of ≈10 ps resulting from significant conformational changes of the TCBD-arene moiety upon photoexcitation, opening a pathway for non-radiative decay. The PL was recovered in vacuum-processed films or when the molecules were dispersed in a PMMA matrix leading to a significant increase of the excited state deactivation time. As shown by cyclic voltammetry, these molecules can act as electron donors compared to C60 . Hence, vacuum-processed planar heterojunction organic solar cells were fabricated leading to a maximum power conversion efficiency of ca. 1.9 % which decreases with the increase of the arene size.

14.
Phys Chem Chem Phys ; 22(22): 12373-12381, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32309827

ABSTRACT

In spite of their remarkable luminescence properties, benzothioxanthene imide (BTXI, an imide containing rylene chromophores) derivatives have been largely overlooked compared to their perylene bisimide and naphthalene bisimide counterparts. Thus, their detailed photophysics are much less understood. In this paper, we show how relatively simple structural modifications of the backbone of BTXIs can lead to impressive variations in their inter-system crossing kinetics. Thus, through rational engineering of their structure, it is possible to obtain a triplet formation quantum yield that reaches unity, making BTXI a promising class of compounds for triplet-based applications (photodynamic therapy, electroluminescence, etc.).

15.
Chem Sci ; 11(2): 567-576, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-32206274

ABSTRACT

π-Helical push-pull dyes were prepared and their (chir)optical properties were investigated both experimentally and computationally. Specific fluorescent behaviour of bis-substituted system was observed with unprecedented solvent effect on the intensity of circularly polarized luminescence (CPL, dissymmetry factor decreasing from 10-2 to 10-3 with an increase in solvent polarity) that was linked to a change in symmetry of chiral excited state and suppression of interbranched exciton coupling. The results highlight the potential of CPL spectroscopy to study and provide a deeper understanding of electronic photophysical processes in chiral π-conjugated molecules.

16.
Sci Rep ; 10(1): 3262, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32094356

ABSTRACT

Usually considered as a byproduct, the 1,6-dibrominated PDI has rarely been functionalized for the preparation of electro-active conjugated molecules, particularly in the field of organic photovoltaics. In light of the literature, one can ask oneself: Does a 1,7-isomer based functional molecule systematically perform better than its 1,6-analogue? To answer this question, we report herein the synthesis and direct comparison of two indeno[1,2-b]thiophene (IDT) end-capped perylene diimide regioisomers (PDI) (1,6 and 1,7) used as non-fullerene acceptors in organic solar cells. It turned out that in our case, ie, when blended with the well-known PTB7-Th donor polymer, higher performance was reached for devices made with the 1,6-analogue.

17.
Chem Rec ; 19(6): 1123-1130, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30828956

ABSTRACT

This mini review aims at taking stock of some arylamine based push-pull chromophores developed in the "Systèmes Conjugués Linéaires" (SCL) group at the University of Angers. Selected examples highlight more than a decade of design principles and strategies implemented to afford simple and accessible soluble molecular donors as active material for organic solar cells (OSCs).

18.
Molecules ; 23(4)2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29677127

ABSTRACT

The synthesis and preliminary evaluation as donor material for organic photovoltaics of the poly(diketopyrrolopyrrole-spirobifluorene) (PDPPSBF) is reported herein. Prepared via homogeneous and heterogeneous direct (hetero)arylation polymerization (DHAP), through the use of different catalytic systems, conjugated polymers with comparable molecular weights were obtained. The polymers exhibited strong optical absorption out to 700 nm as thin-films and had appropriate electronic energy levels for use as a donor with PC70BM. Bulk heterojunction solar cells were fabricated giving power conversion efficiencies above 4%. These results reveal the potential of such polymers prepared in only three steps from affordable and commercially available starting materials.


Subject(s)
Fluorenes/chemistry , Polymerization , Pyrroles/chemistry , Microscopy, Atomic Force , Molecular Structure , Polymers/chemistry , Solar Energy , Spectrum Analysis
19.
Sci Rep ; 7(1): 8317, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28814729

ABSTRACT

The synthesis of a molecule constituted of two diarylamine-based push-pull chromophores covalently linked via their nitrogen atom is described. Comparison of the electronic properties with the parent monomer shows that dimerization has negligible influence on the electronic properties of the molecule but exerts a dramatic impact on the capacity of the material to self-reorganize. Application of thermal annealing to thin films induces the crystallization under original morphologies, a process accompanied by a partial bleaching of the absorption in the visible range and by a huge increase of hole-mobility. X-ray diffraction data on single crystals reveal the presence of π-stacked organization with a non-centrosymmetric co-facial arrangement of the dipoles which leads to intrinsic 2nd order bulk NLO properties of thin films as evidenced by second harmonic generation under 800 nm laser light. The implications of this thermally induced crystallization on the photovoltaic properties of the material are discussed on the basis of preliminary results obtained on simple bilayer organic solar cells.

20.
Chemistry ; 23(26): 6277-6281, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28301059

ABSTRACT

Impact of the enantiopurity on organic photovoltaics (OPV) performance was investigated through the synthesis of racemic and enantiomerically pure naphthalimide end-capped helicenes and their application as non-fullerene molecular electron acceptors in OPV devices. A very strong increase of the device performance was observed by simply switching from the racemic to the enantiopure forms of these π-helical non-fullerene acceptors with power conversion efficiencies jumping from 0.4 to about 2.0 % in air-processed poly(3-hexylthiophene)-based devices, thus highlighting the key role of enantiopurity in the photovoltaic properties.

SELECTION OF CITATIONS
SEARCH DETAIL