Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370074

ABSTRACT

Magnetic shape memory Heuslers have a great potential for their exploitation in next-generation cooling devices and actuating systems, due to their "giant" caloric and thermo/magnetomechanical effects arising from the combination of magnetic order and a martensitic transition. Thermal hysteresis, broad transition range, and twinning stress are among the major obstacles preventing the full exploitation of these materials in applications. Using Ni-Mn-Ga seven-modulated epitaxial thin films as a model system, we investigated the possible links between the phase transition and the details of the twin variants configuration in the martensitic phase. We explored the crystallographic relations between the martensitic variants from the atomic-scale to the micro-scale through high-resolution techniques and combined this information with the direct observation of the evolution of martensitic twin variants vs. temperature. Based on our multiscale investigation, we propose a route for the martensitic phase transition, in which the interfaces between different colonies of twins play the major role of initiators for both the forward and reverse phase transition. Linking the martensitic transition to the martensitic configuration sheds light onto the possible mechanisms influencing the transition and paves the way towards microstructure engineering for the full exploitation of shape memory Heuslers in different applications.

2.
Inorg Chem ; 58(20): 14204-14211, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31593448

ABSTRACT

By means of single-crystal X-ray diffraction, we give direct crystallographic evidence of a centrosymmetry breaking below TS = 200 K, concomitant with the onset of a commensurate structural modulation in the quadruple perovskite YMn3Mn4O12. This result, which explains the anomalously large thermal coefficient of the Y3+ ion in previously reported structural models, is attributed to the small size of the Y3+ ion, which causes its underbonding within the dodecahedral coordination polyhedron. The present data are consistent with a commensurate superstructure described by an I-centered pseudo-orthorhombic cell with polar Ia symmetry and a ≈ aF√2 = 10.4352(7) Å, b ≈ 2bF = 14.6049(9) Å, c ≈ cF√2 = 10.6961(7) Å, and ß = 90.110(3)°, where aF ≈ cF ≈ 7.45 Å, bF ≈ 7.34 Å, and ß ≈ 91° are the unit cell parameters of the I2/m structure observed at room temperature. Consistent with the above polar structure, at lower temperature, T* = 70 K, we observe in polycrystalline samples an anomaly of the direct current (DC) and alternating current (AC) magnetization, concomitant with the appearance of a net electric polarization, as indicated by pyrocurrent and dielectric constant measurements. These results, complemented by electrical transport measurements, suggest a magnetic ferroelectricity driven by short-range magnetic order in YMn3Mn4O12.

3.
Inorg Chem ; 55(12): 6308-14, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27247990

ABSTRACT

We present a comprehensive study of the electrical properties of bulk polycrystalline BiFe0.5Mn0.5O3, a double perovskite synthesized in high-pressure and high-temperature conditions. BiFe0.5Mn0.5O3 shows an antiferromagnetic character with TN = 288 K overlapped with an intrinsic antiferroelectricity due to the Bi(3+) stereochemical effect. Beyond this, the observation of a semiconductor-insulator transition at TP ≈ 140 K allows one to define three distinct temperature ranges with completely different electrical properties. For T > TN, electric transport follows an ordinary thermally activated Arrhenius behavior; the system behaves as a paramagnetic semiconductor. At intermediate temperatures (TP < T < TN), electric transport is best described by Mott's variable range hopping model with lowered dimensionality D = 1, stabilized by the magnetic ordering process and driven by the inhomogeneity of the sample on the B site of the perovskite. Finally, for T < TP, the material becomes a dielectric insulator, showing very unusual poling-induced soft ferroelectricity with high saturation polarization, similar to the parent compound BiFeO3. Under external electric poling, the system irreversibly evolves from antiferroelectric to polar arrangement.

4.
Inorg Chem ; 55(9): 4381-90, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27078522

ABSTRACT

The physical characterization and the extended crystallographic study of the double perovskite system Pb2Mn0.6Co0.4WO6 indicate an improper ferroelectric contribution to the polarization induced by the magnetic ordering. In the paramagnetic phase, the compound displays a centrosymmetric orthorhombic double perovskite structure with the Pmcn1' symmetry. The structure is strongly distorted by the lead stereoactivity. Magnetization measurements show two magnetic transitions at 188 and 9 K, but the time-of-flight neutron diffraction data provide evidence for a long-range magnetic ordering only below the second transition. Quantitative structure refinements combined with a comprehensive symmetry analysis indicate the Pm'c21' magnetic space group to be the adequate symmetry to describe the structural distortions and spin ordering in the ground state of the system. The symmetry implies a coexistence of a spontaneous ferromagnetic moment and a ferroelectric polarization along the orthogonal b- and c-axes, respectively, in the long-range ordered structure. Macroscopic measurements confirm the presence of the spontaneous polarization also below the first transition at 188 K, where only short-range magnetic correlations are evidenced by diffuse scattering in neutron diffraction.

5.
J Phys Condens Matter ; 27(28): 286002, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26125225

ABSTRACT

We report a comprehensive study of the spontaneous magnetization reversal (MRV) performed on the disordered polycrystalline perovskite BiFe(0.5)Mn(0.5)O(3), an intriguing compound synthesized in high pressure-high temperature conditions. In disordered systems, the origin of MRV is not completely clarified, yet. In BiFe(0.5)Mn(0.5)O(3), compositional disorder involves the ions on the B-site of the perovskite determining the presence of mesoscopic clusters, characterized by high concentrations of iron or manganese and thus by different resultant magnetization. This leads to the observation of two singular fields H(1) and H(2) dependent on the degree of inhomogeneity, unpredictably changing from sample to sample due to synthesis effects. These fields separate different magnetic responses of the system; for applied fields H < H(1), the Fe and Mn clusters weakly interact in a competitive way, giving rise to MRV, while for an intermediate field regime the energy of this weak interaction becomes comparable to the energy of the system under field application. As a consequence, the zero field cooled magnetization thermal evolution depends on the sample degree of inhomogeneity. In this field regime, applied field Mössbauer spectroscopy indicates that the iron rich clusters are highly polarized by the field, while the largest part of the material, consisting of AFM clusters characterized by axial anisotropy and uncompensated moments, shows soft or hard magnetism depending on T. Above the higher singular field, the M(T) curves show the trend expected for a classical antiferromagnetic material and the competitive character is suppressed. The MRV phenomenon results to be highly sensitive on both the thermal and magnetic measurement conditions; for this reason the present work proposes a characterization strategy that in principle has a large applicability in the study of disordered perovskites showing similar phenomenology.

6.
Adv Mater ; 27(32): 4760-6, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26180008

ABSTRACT

Giant magnetically induced twin variant reorientation, comparable in intensity with bulk single crystals, is obtained in epitaxial magnetic shape-memory thin films. It is found to be tunable in intensity and spatial response by the fine control of microstructural patterns at the nanoscopic and microscopic scales. A thorough experimental study (including electron holography) allows a multiscale comprehension of the phenomenon.

7.
Inorg Chem ; 53(19): 10283-90, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25197959

ABSTRACT

In this paper we describe the new ferri-electric compound Pb2MnWO6 (PMW), a double perovskite that can be considered as a novel structural prototype showing complex nuclear structure and interesting electric properties. According to single-crystal synchrotron data, PMW crystallizes in the noncentrosymmetric polar group Pmc21, in which the two symmetry-independent lead atoms give rise to a ferrielectric arrangement. The accurate crystallographic characterization indicates the presence of a complex distortion of the perovskite lattice driven by the local instability induced by the 6s(2) lone pair of the lead atoms. These peculiar structural features are confirmed by the complete electrical characterization of the system. Dielectric and transport measurements indicate an insulating character of the sample, while pyroelectric measurements point out a ferrielectric state characterized by different contributions. The magnetic transition at 45 K is accompanied by a magnetostrictive effect indicating a probable spin-lattice coupling. The characterizations carried out on PMW, showing the evidence of a coexistence of antiferromagnetism and ferrielectricity at low temperature, could lead to the definition of a new class of multiferroic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...