Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 14(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392677

ABSTRACT

The direct integration of membrane distillation and solar energy collection in a single module is a promising technology for autonomous seawater desalination in remote regions; however, the modeling and design of such modules are challenging because of the coupling of the radial and longitudinal heat and mass transfers. In a previous study, we provided as a first modeling approach a hollow fiber solar collector vacuum membrane distillation (VMD) module, considering a constant temperature at the shell side and a pure water feed. Here, a full model is developed to describe the coupled effects of the solar collector and a hollow fiber VMD module operating in an outside/in mode with saline water. The model considers all the main phenomena (membrane distillation, temperature and concentration polarization, absorption of solar radiation and energy balances over the solar collector, radial and longitudinal heat and mass transfer, seawater properties, and more than 30 variables). Applied to simulate the behavior of a semi-industrial-scale module, it allows the influence of solar radiation on the performance/limits of the integrated module to be discussed based on the radial and longitudinal profiles and heat flows. The model can be used to identify key points in the module design to better utilize solar radiation and manage heat flows.

2.
Membranes (Basel) ; 13(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37755202

ABSTRACT

Photothermal membrane distillation is a new-generation desalination process that can take advantage of the ability of specific materials to convert solar energy to heat at the membrane surface and thus to overcome temperature polarization. The development of appropriate photothermal membranes is challenging because many criteria need to be considered, including light to heat conversion, permeability and low wetting, and fouling, as well as cost. Based on our experience with wetting characterization, this study compares photothermal membranes prepared using different well-known or promising materials, i.e., silver nanoparticles (Ag NPs), carbon black, and molybdenum disulfide (MoS2), in terms of their structural properties, permeability, wettability, and wetting. Accordingly, membranes with different proportions of photothermal NPs are prepared and fully characterized in this study. Wetting is investigated using the detection of dissolved tracer intrusion (DDTI) method following membrane distillation operations with saline solutions. The advantages of MoS2 and carbon black-based photothermal membranes in comparison with polyvinylidene difluoride (PVDF) membranes include both a permeability increase and a less severe wetting mechanism, with lower wetting indicators in the short term. These materials are also much cheaper than Ag NPs, having higher permeabilities and presenting less severe wetting mechanisms.

3.
Water Res ; 69: 183-194, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25481077

ABSTRACT

Membrane bioreactor (MBR) is increasingly used for municipal wastewater treatment and reuse and great concerns have been raised to some emerging trace pollutants found in aquatic environment in the last decade, notably the pharmaceuticals. As a consequence the removal of pharmaceutical micropollutants by MBRs has been extensively investigated. But there is still a lack of knowledge on the effects of the current presence of pharmaceutical micropollutants in domestic wastewaters on MBR fouling. Among the different pharmaceuticals, it was decided to focus on carbamazepine (CBZ), an anti-epileptic drug, because of its occurrence in domestic wastewaters and persistency in biological processes including MBRs. This paper focuses on the effects of continuous carbamazepine pollution on MBR fouling. A continuous introduction of CBZ into the MBR via the feed (about 90 µg L(-1) CBZ in the feed) provoked a TMP jump. It occurred just 1 day after the addition of CBZ in MBR and a significantly higher increase rate of TMP was also observed after 1 day after addition of CBZ in MBR, as compared to that before addition of CBZ. This indicates that the pharmaceutical stress induced by CBZ causes more severe membrane fouling. Addition of CBZ was shown to induce a significant increase of the concentration of proteins in the supernatant at the beginning several days then stabilized to original level whereas no significant change was found for polysaccharides. HPLC-SEC analysis showed that addition of CBZ induced a decrease of 100-1000 kDa protein-like SMPs and a more significant increase of 10-100 kDa protein-like SMPs in the supernatant. Moreover it was found that addition of CBZ in the MBR affected the sludge microbial activities, as a slight inhibition (about 20%) of the exogenous respiration rate was observed. The increased membrane fouling could be related to the change in biomass characteristics and supernatant quality after addition of CBZ in MBR. This study allows also suggesting that 10-100 kDa protein-like SMPs might accumulate inside the biocake that was formed on the membrane surface during MBR operation and play an important role in the TMP jump phenomenon.


Subject(s)
Biofouling , Bioreactors , Carbamazepine/chemistry , Membranes, Artificial , Pharmaceutical Preparations/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Biomass , Chromatography, Gel , Chromatography, High Pressure Liquid , Cities , Flocculation , Sewage/chemistry
4.
Water Res ; 46(18): 6084-94, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22975737

ABSTRACT

Sanitation improvement in developing countries could be achieved through wastewater treatment processes. Nowadays alternative concepts such as urine separate collection are being developed. These processes would be an efficient way to reduce pollution of wastewater while recovering nutrients, especially phosphorus, which are lost in current wastewater treatment methods. The precipitation of struvite (MgNH(4)PO(4)∙6H(2)O) from urine is an efficient process yielding more than 98% phosphorus recovery with very high reaction rates. The work presented here aims to determine the kinetics and mechanisms of struvite precipitation in order to supply data for the design of efficient urine treatment processes. A methodology coupling the resolution of the population balance equation to turbidity measurement was developed, and batch experiments with synthetic and real urine were performed. The main mechanisms of struvite crystallization were identified as crystal growth and nucleation. A satisfactory approximation of the volumetric crystal size distribution was obtained. The study has shown the low influence on the crystallization process of natural organic matter contained in real urine. It has also highlighted the impact of operational parameters. Mixing conditions can create segregation and attrition which influence the nucleation rate, resulting in a change in crystals number, size, and thus final crystal size distribution (CSD). Moreover urine storage conditions can impact urea hydrolysis and lead to spontaneous struvite precipitation in the stock solution also influencing the final CSD. A few limits of the applied methodology and of the proposed modelling, due to these phenomena and to the turbidity measurement, are also discussed.


Subject(s)
Magnesium Compounds/urine , Nephelometry and Turbidimetry/methods , Phosphates/urine , Animals , Crystallization , Humans , Struvite
5.
Water Res ; 45(19): 6362-70, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21996607

ABSTRACT

Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments.


Subject(s)
Organic Chemicals/isolation & purification , Seawater/chemistry , Ultrafiltration/methods , Adsorption , Biofouling , Carbon/analysis , Charcoal/chemistry , Chromatography, Gel , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Microscopy, Electron, Scanning , Permeability , Powders , Rheology , Spectrometry, X-Ray Emission , Surface Properties , Time Factors , Water Pollutants, Chemical/isolation & purification , Water Purification
6.
Water Res ; 45(5): 2060-72, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21232780

ABSTRACT

For membrane bioreactors (MBR) applied to wastewater treatment membrane fouling is still the prevalent issue. The main limiting phenomena related to fouling is a sudden jump of the transmembrane pressure (TMP) often attributed to the collapse of the fouling layer. Among existing techniques to avoid or to delay this collapse, the addition of active particles membrane fouling reducers (polymer, resins, powdered activated carbon (PAC), zeolithe...) showed promising results. Thus the main objective of this work is to determine if fouling can be reduced by inclusion of inert particles (500 nm and inert compared to other fouling reducers) and which is the impact on filtration performances of the structuring of the fouling. Those particles were chosen for their different surface properties and their capability to form well structured layer. Results, obtained at constant pressure in dead end mode, show that the presence of particles changes foulant deposition and induces non-compressible fouling (in the range of 0.5-1 bar) and higher rejection values compared to filtration done on supernatant alone. Indeed dead end filtration tests show that whatever interactions between biofluid and particles, the addition of particles leads to better filtration performances (in terms of rejection, and fouling layer compressibility). Moreover results confirm the important role played by macromolecular compounds, during supernatant filtration, creating highly compressible and reversible fouling. In conclusion, this study done at lab-scale suggests the potential benefit to engineer fouling structure to control or to delay the collapse of the fouling layer. Finally this study offers the opportunities to enlarge the choice of membrane fouling reducers by taking into consideration their ability to form more consistent fouling (i.e. rigid, structured fouling).


Subject(s)
Bioreactors , Membranes, Artificial , Sanitary Engineering/methods , Sewage/chemistry , Biofouling , Chromatography, High Pressure Liquid , Filtration/methods , Microscopy, Electron, Scanning , Particle Size , Polymers/chemistry , Polystyrenes/chemistry , Resins, Synthetic/chemistry , Sanitary Engineering/instrumentation , Triazines/chemistry
7.
Water Res ; 44(18): 5260-73, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20659753

ABSTRACT

Seawater desalination by Reverse Osmosis (RO) is an interesting solution for drinking water production. However, because of limitation by the osmotic pressure, a high recovery factor is not attainable. Consequently, large volumes of brines are discharged into the sea and the flow rate produced (permeate) is limited. In this paper, Vacuum Membrane Distillation (VMD) is considered as a complementary process to RO to further concentrate RO brines and increase the global recovery of the process. VMD is an evaporative technology that uses a membrane to support the liquid-vapour interface and enhance the contact area between liquid and vapour in comparison with conventional distillation. This study focuses on VMD for the treatment of RO brines. Simulations were performed to optimise the operating conditions and were completed by bench-scale experiments using actual RO brines and synthetic solutions up to a salt concentration of 300 g L(-1). Operating conditions such as a highly permeable membrane, high feed temperature, low permeate pressure and a turbulent fluid regime allowed high permeate fluxes to be obtained even for a very high salt concentration (300 g L(-1)). For the membrane studied, temperature and concentration polarisation were shown to have little effect on permeate flux. After 6 to 8 h, no organic fouling or biofouling was observed for RO brines. At high salt concentrations, scaling occurred (mainly due to calcium precipitation) but had only a limited impact on the permeate flux (24% decrease for a permeate specific volume of 43L m(-2) for the highest concentration of salt). Calcium carbonate and calcium sulphate precipitated first due to their low solubility and formed mixed crystal deposits on the membrane surface. These phenomena only occurred on the membrane surface and did not totally cover the pores. The crystals were easily removed simply by washing the membrane with water. A global recovery factor of 89% can be obtained by coupling RO and VMD.


Subject(s)
Distillation/methods , Membranes, Artificial , Osmosis , Salts/chemistry , Seawater/chemistry , Chemical Precipitation , Computer Simulation , Microscopy, Electron, Scanning , Permeability , Salinity , Solutions , Spectrometry, X-Ray Emission , Temperature , Time Factors , Vacuum
8.
Water Res ; 40(12): 2405-15, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16759682

ABSTRACT

This work aims to compare biomass structure and performance of a submerged membrane bioreactor (SMBR) and an activated sludge process (ASP) treating the same domestic wastewater. The influence of the separation technique (membrane filtration or settling) and operation at high sludge-retention time (SRT) were investigated. Over the entire range of SRT (10-110 days), the SMBR achieved very good organic removal efficiencies, ranging from 90.8+/-0.2% to 94.2+/-1.6% based on total COD (TCOD), whereas those of ASP were between 87.4+/-1.8% and 90.3+/-0.8%. The contribution of the membrane in the increase in performance was due to total suspended solid retention and also partly due to retention of proteins and polysaccharides of the sludge supernatant. No significant difference in excess sludge production was observed between the two processes operated at the same SRT, but sludge production in SMBR decreased from 0.31 to 0.13 g(VSS)g(COD)(-1) as SRT increased from 9 to 110 days. The difference in sludge characteristics and performance was especially pronounced as SRT increased, resulting in deterioration of sludge settleability and effluent quality of the ASP (filamentous bacteria, increase of protein and polysaccharide release). Membrane filtration induced accumulation of soluble and colloidal proteins and polysaccharides which were progressively degraded in the supernatant as the SRT increased. At similar SRT, no significant difference was observed in the amount of extractable exocellular polymeric substances (bound EPS) from ASP and SMBR sludge. However as the SRT increased, the total specific amount of bound EPS in flocs decreased and the ratio proteins/polysaccharides also decreased. Concomitantly, laser diffraction analysis, microscopic observations, turbidity and DSVI measurement showed that the SRT increase induced significant modifications in sludge morphology in SMBR: decrease in floc size, densification of aggregates, and development of non-flocculating organisms.


Subject(s)
Bioreactors , Membranes, Artificial , Polymers/chemistry , Sewage/microbiology , Waste Disposal, Fluid/methods , Water Purification/methods , Biomass , Filtration , Sewage/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...