Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38713096

ABSTRACT

OBJECTIVES: (1) To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; (2) to identify predictors of immune responses to vaccination; and (3) to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. METHODS: Sixty ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys®, Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFNγ/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementarity determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed-effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. RESULTS: The primary vaccination induced an 11- to 208-fold increase in binding and neutralizing antibody levels and a 3- to 4-fold increase in IFNγ/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3- to 5-fold increase in binding antibodies and 4- to 5-fold increase in IFNγ/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. INTERPRETATION: Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.

2.
Article in English | MEDLINE | ID: mdl-38071574

ABSTRACT

BACKGROUND: Atrophied T2-lesion volume (aT2-LV) is an exploratory imaging marker in multiple sclerosis (MS) reflecting the volume of lesions subsumed into cerebrospinal fluid (CSF). OBJECTIVE: To investigate the effect of ocrelizumab (OCR) versus placebo (PBO) over 120 weeks on the accumulation of aT2-LV in a double-blind placebo-controlled (DBP) phase 3, primary-progressive (PP) MS study (ORATORIO; NCT01194570). METHODS: This post-hoc, MRI-blinded analysis evaluated 732 PPMS randomised to OCR (488) or PBO (244). Atrophied T2-LV was calculated by overlaying baseline T2-lesion masks on follow-up CSF maps. Clinical data from DBP and open-label extension (OLE) periods were available. Treatment effect was evaluated by a mixed-effect model with repeated measures, while logistic regression explored the association of aT2-LV at week 120 and clinical outcomes in the OLE period. RESULTS: OCR treatment significantly reduced accumulation of aT2-LV compared with PBO (319.4 mm3 vs 366.1 mm3, p=0.015) at 120 weeks. OCR showed superiority over PBO in reducing aT2-LV in patients who developed confirmed disability progression (CDP) during the DBP period at 12 (CDP12) and 24 (CDP24) weeks for the composite of Expanded Disability Status Scale (EDSS), Nine-Hole Peg Test and Timed 25-Foot Walk test. Accumulation of aT2-LV at week 120 was related to CDP12-EDSS (p=0.018) and CDP24-EDSS (p=0.022) in the OLE for the patients who were treated by PBO in the DBP only. CONCLUSIONS: OCR showed a significant effect of reducing the accumulation of aT2-LV in PPMS in the DBP period and was related to CDP-EDSS in OLE only in the PBO arm.

3.
Ann Clin Transl Neurol ; 9(10): 1643-1659, 2022 10.
Article in English | MEDLINE | ID: mdl-36165097

ABSTRACT

OBJECTIVE: To compare "hybrid immunity" (prior COVID-19 infection plus vaccination) and post-vaccination immunity to SARS CoV-2 in MS patients on different disease-modifying therapies (DMTs) and to assess the impact of vaccine product and race/ethnicity on post-vaccination immune responses. METHODS: Consecutive MS patients from NYU MS Care Center (New York, NY), aged 18-60, who completed primary COVID-19 vaccination series ≥6 weeks previously were evaluated for SARS CoV-2-specific antibody responses with electro-chemiluminescence and multiepitope bead-based immunoassays and, in a subset, live virus immunofluorescence-based microneutralization assay. SARS CoV-2-specific cellular responses were assessed with cellular stimulation TruCulture IFNγ and IL-2 assay and, in a subset, with IFNγ and IL-2 ELISpot assays. Multivariate analyses examined associations between immunologic responses and prior COVID-19 infection while controlling for age, sex, DMT at vaccination, time-to-vaccine, and vaccine product. RESULTS: Between 6/01/2021 and 11/11/2021, 370 MS patients were recruited (mean age 40.6 years; 76% female; 53% non-White; 22% with prior infection; common DMT classes: ocrelizumab 40%; natalizumab 15%, sphingosine-1-phosphate receptor modulators 13%; and no DMT 8%). Vaccine-to-collection time was 18.7 (±7.7) weeks and 95% of patients received mRNA vaccines. In multivariate analyses, patients with laboratory-confirmed prior COVID-19 infection had significantly increased antibody and cellular post-vaccination responses compared to those without prior infection. Vaccine product and DMT class were independent predictors of antibody and cellular responses, while race/ethnicity was not. INTERPRETATION: Prior COVID-19 infection is associated with enhanced antibody and cellular post-vaccine responses independent of DMT class and vaccine type. There were no differences in immune responses across race/ethnic groups.


Subject(s)
COVID-19 , Viral Vaccines , Adult , Antibodies, Viral , COVID-19 Vaccines , Female , Humans , Interleukin-2 , Male , Natalizumab , SARS-CoV-2 , Sphingosine-1-Phosphate Receptors , Viral Vaccines/genetics
4.
Ann Neurol ; 91(6): 782-795, 2022 06.
Article in English | MEDLINE | ID: mdl-35289960

ABSTRACT

OBJECTIVE: The objective of this study was to determine the impact of multiple sclerosis (MS) disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. METHODS: Patients with MS aged 18 to 60 years were evaluated for anti-nucleocapsid and anti-Spike receptor-binding domain (RBD) antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture enzyme-linked immunosorbent assay (ELISA); and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS: Between January 6, 2021, and July 21, 2021, 389 patients with MS were recruited (mean age 40.3 years; 74% women; 62% non-White). Most common DMTs were ocrelizumab (OCR)-40%; natalizumab -17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. One hundred seventy-seven patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, and 47 were asymptomatic. Antibody responses were markedly attenuated in OCR compared with other groups (p ≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p = 0.03), increased in natalizumab (p <0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r = 0.45, p = 0.0002) and non-OCR (r = 0.64, p <0.0001). Immune responses did not differ by race/ethnicity. Coronavirus disease 2019 (COVID-19) clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION: DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and nondisabled group of patients with MS. ANN NEUROL 2022;91:782-795.


Subject(s)
COVID-19 , Multiple Sclerosis , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Viral , Ethnicity , Female , Humans , Immunity, Cellular , Immunity, Humoral , Male , Natalizumab/therapeutic use , SARS-CoV-2
5.
J Virol ; 79(20): 12783-97, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16188981

ABSTRACT

Technical challenges associated with mutagenesis of the large oriL palindrome have hindered comparisons of the functional roles of the herpes simplex virus type 1 (HSV-1) origins of DNA replication, oriL and oriS, in viral replication and pathogenesis. To address this problem, we have developed a novel PCR-based strategy to introduce site-specific mutations into oriL and other large palindromes. Using this strategy, we generated three plasmids containing mutant forms of oriL, i.e., pDoriL-I(L), pDoriL-I(R), and pDoriL-I(LR), containing point mutations in the left, right, and both copies, respectively, of the origin binding protein (OBP) binding site (site I) which eliminate OBP binding. In in vitro DNA replication assays, plasmids with mutations in only one arm of the palindrome supported origin-dependent DNA replication, whereas plasmids with symmetrical mutations in both arms of the palindrome were replication incompetent. An analysis of the cloned mutant plasmids used in replication assays revealed that a fraction of each plasmid mutated in only one arm of the palindrome had lost the site I mutation. In contrast, plasmids containing symmetrical mutations in both copies of site I retained both mutations. These observations demonstrate that the single site I mutations in pDoriL-I(L) and pDoriL-I(R) are unstable upon propagation in bacteria and suggest that functional forms of both the left and right copies of site I are required to initiate DNA replication at oriL. To examine the role of oriL and oriS site I in virus replication, we introduced the two site I mutations in pDoriL-I(LR) into HSV-1 DNA to yield the mutant virus DoriL-I(LR) and the same point mutations into the single site I sequence present in both copies of oriS to yield the mutant virus DoriS-I. In Vero cells and primary rat embryonic cortical neurons (PRN) infected with either mutant virus, viral DNA synthesis and viral replication were efficient, confirming that the two origins can substitute functionally for one another in vitro. Measurement of the levels of oriL and oriS flanking gene transcripts revealed a modest alteration in the kinetics of ICP8 transcript accumulation in DoriL-I(LR)-infected PRN, but not in Vero cells, implicating a cell-type-specific role for oriL in regulating ICP8 transcription.


Subject(s)
DNA, Viral/genetics , Herpesvirus 1, Human/genetics , Replication Origin/physiology , Animals , Base Sequence , Cells, Cultured , DNA, Viral/biosynthesis , Herpes Simplex/virology , Herpesvirus 1, Human/metabolism , Humans , Molecular Sequence Data , Point Mutation , Rats , Replication Origin/genetics
6.
Biotechnol Appl Biochem ; 42(Pt 2): 133-42, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15901236

ABSTRACT

The breakthrough of a model virus, bacteriophage PhiX-174, through normal-flow virus filters was studied using both commercial process fluids and model feed streams. The results indicate that (i) PhiX-174 is a reasonable model for a mammalian parvovirus [MMV (murine minute virus)] in virus filtration studies; (ii) PhiX-174 LRV [log(reduction value)] shows a better correlation with percentage flow decline compared with volume processed under a variety of conditions; (iii) although the extent of decline in virus LRV is dependent on the mechanism of filter fouling, the fouling mechanisms operative in a viral validation study are representative of those likely to be found under actual production conditions. The mechanism of LRV decline by many process streams was proposed to be due to selective plugging of small pores. A theoretical model as well as a predictive equation for LRV decline versus flow decay was derived; experimental results from filtration studies using pore-plugging feed stocks were consistent with the equation. As protein solutions may vary in their adsorptive versus plugging behaviour during filtration, an evaluation of the LRV-versus-flow-decay relationship on a biopharmaceutical-product-specific basis may be warranted.


Subject(s)
Bacteriophage phi X 174/isolation & purification , Ultrafiltration/instrumentation , Animals , Bacteriophage phi X 174/ultrastructure , Cell Line , Humans , Mice , Minute Virus of Mice/isolation & purification , Minute Virus of Mice/ultrastructure , Models, Biological , Ultrafiltration/methods , Ultrafiltration/standards
7.
J Immunol ; 169(12): 6795-805, 2002 Dec 15.
Article in English | MEDLINE | ID: mdl-12471111

ABSTRACT

Naive peripheral B cells are maintained in sufficient numbers and diversity to mount effective immune responses against infectious agents. However, the size and repertoire of this B cell pool is constantly diminished by normal cell turnover and Ag activation. Homeostatic (Ag-independent) proliferation in response to B cell depletion is one mechanism to compensate for this cell loss. We have used purified CFSE-labeled B cells and an adoptive transfer model system to show that immature and mature B cells divide in a variety of B cell-deficient (scid, xid, IL-7(-/-), and sublethally irradiated) hosts. Homeostatic B cell proliferation is T cell independent, and B cells that have replicated by this mechanism retain the antigenic phenotype of naive B cells. Replication is significantly reduced in B cell-sufficient normal or B cell-reconstituted immunodeficient recipients by the action of competing mature follicular B cells. Using xid mice and transcription factor knockouts, we show that the activation signal(s) that lead to homeostatic B cell proliferation require Bruton's tyrosine kinase; however, c-Rel, a Bruton's tyrosine kinase-induced NF-kappaB/Rel transcription factor critical for Ag and mitogen stimulation, is dispensable, indicating the uniqueness of this activation pathway. Survival and replication signals can also be separated, because the transcription factor p50 (NF-kappaB1), which is required for the survival of peripheral B cells, is not necessary for homeostatic replication. Homeostatic B cell proliferation provides an Ag-independent mechanism for the maintenance and expansion of naive B cells selected into the mature B cell pool.


Subject(s)
B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/immunology , Homeostasis/immunology , Interphase/immunology , Lymphopenia/immunology , Adoptive Transfer , Agammaglobulinaemia Tyrosine Kinase , Animals , B-Lymphocyte Subsets/pathology , B-Lymphocyte Subsets/transplantation , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Division/genetics , Cell Division/immunology , Feedback , Female , Homeostasis/genetics , Immunophenotyping , Interleukin-17/deficiency , Interleukin-17/genetics , Interphase/genetics , Lymphopenia/genetics , Male , Mice , Mice, Inbred A , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, SCID , Mice, Transgenic , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p50 Subunit , Protein-Tyrosine Kinases/physiology , Proto-Oncogene Proteins c-rel/deficiency , Proto-Oncogene Proteins c-rel/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Spleen/cytology , Spleen/immunology , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...