Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microb Ecol ; 86(3): 2161-2172, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37148309

ABSTRACT

Studies based on protein-coding genes are essential to describe the diversity within bacterial functional groups. In the case of aerobic anoxygenic phototrophic (AAP) bacteria, the pufM gene has been established as the genetic marker for this particular functional group, although available primers are known to have amplification biases. We review here the existing primers for pufM gene amplification, design new ones, and evaluate their phylogenetic coverage. We then use samples from contrasting marine environments to evaluate their performance. By comparing the taxonomic composition of communities retrieved with metagenomics and with different amplicon approaches, we show that the commonly used PCR primers are biased towards the Gammaproteobacteria phylum and some Alphaproteobacteria clades. The metagenomic approach, as well as the use of other combinations of the existing and newly designed primers, show that these groups are in fact less abundant than previously observed, and that a great proportion of pufM sequences are affiliated to uncultured representatives, particularly in the open ocean. Altogether, the framework developed here becomes a better alternative for future studies based on the pufM gene and, additionally, serves as a reference for primer evaluation of other functional genes.


Subject(s)
Alphaproteobacteria , Gammaproteobacteria , Phylogeny , Metagenomics , Bacterial Proteins/genetics , Alphaproteobacteria/genetics
2.
Front Microbiol ; 11: 2059, 2020.
Article in English | MEDLINE | ID: mdl-32983043

ABSTRACT

The temperature-size Rule (TSR) states that there is a negative relationship between ambient temperature and body size. This rule has been independently evaluated for different phases of the life cycle in multicellular eukaryotes, but mostly for the average population in unicellular organisms. We acclimated two model marine cyanobacterial strains (Prochlorococcus marinus MIT9301 and Synechococcus sp. RS9907) to a gradient of temperatures and measured the changes in population age-structure and cell size along their division cycle. Both strains displayed temperature-dependent diel changes in cell size, and as a result, the relationship between temperature and average cell size varied along the day. We computed the mean cell size of new-born cells in order to test the prediction of the TSR on a single-growth stage. Our work reconciles previous inconsistent results when testing the TSR on unicellular organisms, and shows that when a single-growth stage is considered the predicted negative response to temperature is revealed.

3.
mBio ; 10(1)2019 01 02.
Article in English | MEDLINE | ID: mdl-30602582

ABSTRACT

Symbiosis between a marine alga and a N2-fixing cyanobacterium (Cyanobacterium UCYN-A) is geographically widespread in the oceans and is important in the marine N cycle. UCYN-A is uncultivated and is an unusual unicellular cyanobacterium because it lacks many metabolic functions, including oxygenic photosynthesis and carbon fixation, which are typical in cyanobacteria. It is now presumed to be an obligate symbiont of haptophytes closely related to Braarudosphaera bigelowii N2-fixing cyanobacteria use different strategies to avoid inhibition of N2 fixation by the oxygen evolved in photosynthesis. Most unicellular cyanobacteria temporally separate the two incompatible activities by fixing N2 only at night, but, surprisingly, UCYN-A appears to fix N2 during the day. The goal of this study was to determine how the unicellular UCYN-A strain coordinates N2 fixation and general metabolism compared to other marine cyanobacteria. We found that UCYN-A has distinct daily cycles of many genes despite the fact that it lacks two of the three circadian clock genes found in most cyanobacteria. We also found that the transcription patterns in UCYN-A are more similar to those in marine cyanobacteria that are capable of aerobic N2 fixation in the light, such as Trichodesmium and heterocyst-forming cyanobacteria, than to those in Crocosphaera or Cyanothece species, which are more closely related to unicellular marine cyanobacteria evolutionarily. Our findings suggest that the symbiotic interaction has resulted in a shift of transcriptional regulation to coordinate UCYN-A metabolism with that of the phototrophic eukaryotic host, thus allowing efficient coupling of N2 fixation (by the cyanobacterium) to the energy obtained from photosynthesis (by the eukaryotic unicellular alga) in the light.IMPORTANCE The symbiotic N2-fixing cyanobacterium UCYN-A, which is closely related to Braarudosphaera bigelowii, and its eukaryotic algal host have been shown to be globally distributed and important in open-ocean N2 fixation. These unique cyanobacteria have reduced metabolic capabilities, even lacking genes for oxygenic photosynthesis and carbon fixation. Cyanobacteria generally use energy from photosynthesis for nitrogen fixation but require mechanisms for avoiding inactivation of the oxygen-sensitive nitrogenase enzyme by ambient oxygen (O2) or the O2 evolved through photosynthesis. This study showed that symbiosis between the N2-fixing cyanobacterium UCYN-A and its eukaryotic algal host has led to adaptation of its daily gene expression pattern in order to enable daytime aerobic N2 fixation, which is likely more energetically efficient than fixing N2 at night, as found in other unicellular marine cyanobacteria.


Subject(s)
Cyanobacteria/physiology , Gene Expression Regulation, Bacterial , Haptophyta/microbiology , Haptophyta/physiology , Nitrogen Fixation , Symbiosis , Transcription, Genetic , Circadian Clocks , Cyanobacteria/genetics , Sunlight
4.
Methods Mol Biol ; 1742: 125-137, 2018.
Article in English | MEDLINE | ID: mdl-29330796

ABSTRACT

The carotid body is the main arterial chemoreceptor in mammals that mediates the cardiorespiratory reflexes activated by acute hypoxia. Here we describe the protocols followed in our laboratory to study responsiveness to hypoxia of single, enzymatically dispersed, glomus cells monitored by microfluorimetry and the patch-clamp technique.


Subject(s)
Carotid Body/cytology , Chemoreceptor Cells/metabolism , Patch-Clamp Techniques/methods , Single-Cell Analysis/methods , Animals , Carotid Body/physiology , Cell Hypoxia , Cells, Cultured , Cytophotometry , Mice , Rats
5.
PLoS One ; 11(3): e0151699, 2016.
Article in English | MEDLINE | ID: mdl-26982180

ABSTRACT

We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences.


Subject(s)
Oceans and Seas , Phytoplankton/classification , Tropical Climate , Species Specificity
6.
Mar Drugs ; 12(2): 682-99, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24473169

ABSTRACT

Polyunsaturated aldehydes (PUAs) are organic compounds mainly produced by diatoms, after cell wounding. These compounds are increasingly reported as teratogenic for species of grazers and deleterious for phytoplanktonic species, but there is still scarce information regarding concentration ranges and the composition of PUAs in the open ocean. In this study, we analyzed the spatial distribution and the type of aldehydes produced by the large-sized (>10 µm) phytoplankton in the Atlantic Ocean surface. Analyses were conducted on PUAs released after mechanical disruption of the phytoplankton cells, referred to here as potential PUAs (pPUAs). Results show the ubiquitous presence of pPUA in the open ocean, including upwelling areas, as well as oligotrophic gyres. Total pPUA concentrations ranged from zero to 4.18 pmol from cells in 1 L. Identified PUAs were heptadienal, octadienal and decadienal, with heptadienal being the most common (79% of total stations). PUA amount and composition across the Atlantic Ocean was mainly related to the nitrogen:phosphorus ratio, suggesting nutrient-driven mechanisms of PUA production. Extending the range of trophic conditions considered by adding data reported for productive coastal waters, we found a pattern of PUA variation in relation to trophic status.


Subject(s)
Aldehydes/isolation & purification , Diatoms/metabolism , Phytoplankton/metabolism , Aldehydes/chemistry , Atlantic Ocean
7.
Gene ; 522(1): 18-26, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23545307

ABSTRACT

Overexpression of cell membrane aquaporins (AQPs) has recently been associated with tumor formation, particularly with angiogenesis, cell migration and proliferation. Additionally, the hypoxia inducible factor (HIF) family has been extensively implicated in tumor growth and recent studies evidence interplay between AQP expression and HIF stability. Therefore, we decided to explore the effect that AQP overexpression has on the long-term stability of HIF-2α in PC12 cells exposed to chronic hypoxia, characteristic of a growing tumor. HIF-2α levels were analyzed in five PC12 clones with stable overexpression of different proteins (AQP1, AQP3, AQP5, G6PD, and GDNF), in PC12 transiently expressing G6PD or Kv4.2, and in wild-type PC12 cells. Overexpression of AQP1, 3 or 5 in PC12 cells (o-AQP-c) prevented the HIF-2α down-expression otherwise observed, after 16 h at 1% O2, in wt-PC12 and in PC12 overexpressing non-AQP proteins. Longer HIF-2α stability was also observed in o-AQP-c exposed to cobalt chloride or dimethyloxallyl glycine. Normal proteasome activity was confirmed in all clones analyzed. Levels of HIF target genes (PHD2 and 3, VEGF, and PGK1) were 2-4 fold higher in hypoxic o-AQP-c than in wt-PC12 cells, and morphological changes in colony shape together with higher cell proliferation rates were observed in all o-AQP-c. Interestingly, analysis of PHD levels under normoxia revealed lower (50%) PHD3 expression in o-AQP-c than in controls. Our results indicate that AQP overexpression in PC12 cells prolongs HIF-2α stability during chronic hypoxia, leading to higher level of induction of its target genes and likely conferring to these cells a more tumor-like phenotype.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia/physiology , Animals , Aquaporins/biosynthesis , Aquaporins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Hypoxia/genetics , Cell Line, Tumor , PC12 Cells , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rats
8.
FEMS Microbiol Ecol ; 75(2): 205-17, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21155853

ABSTRACT

Acylhomoserine lactone (AHLs)-mediated quorum-sensing (QS) processes seem to be common in the marine environment and among marine pathogenic bacteria, but no data are available on the prevalence of bacteria capable of interfering with QS in the sea, a process that has been generally termed 'quorum quenching' (QQ). One hundred and sixty-six strains isolated from different marine dense microbial communities were screened for their ability to interfere with AHL activity. Twenty-four strains (14.4%) were able to eliminate or significantly reduce N-hexanoyl-l-homoserine lactone activity as detected by the biosensor strain Chromobacterium violaceum CV026, a much higher percentage than that reported for soil isolates, which reinforces the ecological role of QS and QQ in the marine environment. Among these, 15 strains were also able to inhibit N-decanoyl-l-homoserine lactone activity and all of them were confirmed to enzymatically inactivate the AHL signals by HPLC-MS. Active isolates belonged to nine different genera of prevalently or exclusively marine origin, including members of the Alpha- and Gammaproteobacteria (8), Actinobacteria (2), Firmicutes (4) and Bacteroidetes (1). Whether the high frequency and diversity of cultivable bacteria with QQ activity found in near-shore marine isolates reflects their prevalence among pelagic marine bacterial communities deserves further investigation in order to understand the ecological importance of AHL-mediated QS and QQ processes in the marine environment.


Subject(s)
Bacteria/isolation & purification , Seawater/microbiology , Acyl-Butyrolactones/antagonists & inhibitors , Acyl-Butyrolactones/metabolism , Atlantic Ocean , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Chromatography, High Pressure Liquid , Chromobacterium/metabolism , DNA, Bacterial/genetics , Ecosystem , Mass Spectrometry , Molecular Sequence Data , Phylogeny , Quorum Sensing , RNA, Ribosomal, 16S/genetics
9.
Article in English | MEDLINE | ID: mdl-16418008

ABSTRACT

Aquaporins (AQPS) are transmembrane water channels poorly investigated in birds. Using degenerated primers and RT-PCR, we identified in kidney and gastrointestinal tract of Hubbard chickens (Gallus gallus) three fragments, corresponding to ck-AQP2, ck-AQP4, and ck-AQP5 mRNAs. Comparison of nucleotide ck-AQPs sequences to their rat and human orthologues revealed an overall identity of 75-90%. Expression in the renal and gastrointestinal systems of the three ck-AQPs mRNA was analysed by Northern assays. Transcript of ck-AQP2 was only identified in kidney. ck-AQP4 mRNA was highly expressed in brain, and to a lesser extent in kidney and stomach. ck-AQP5 mRNA was found in jejunum and ileum, and to a lesser extent in colon and lung. In situ hybridisation showed ck-AQP5 mRNA in the crypt cells of jejunum, ileum and colon, whereas it was absent from the cells lining the villi. Levels of ck-AQP5 mRNA (analyzed by Northern and in situ hybridisation assays) and protein (analysed by immunohistochemistry) decreased from the jejunum to the colon. This work confirmed the presence of AQPs in chicken, and showed that chicken and mammalian AQPs share a high degree of similarity in nucleotide sequence and tissue distribution.


Subject(s)
Aquaporin 5/physiology , Aquaporins/metabolism , Intestine, Large/metabolism , Intestine, Small/metabolism , Amino Acid Sequence , Animals , Aquaporin 5/metabolism , Base Sequence , Blotting, Northern , Chickens , Cloning, Molecular , Colon/metabolism , DNA, Complementary/metabolism , Gastric Mucosa/metabolism , Gastrointestinal Tract/metabolism , Humans , Immunohistochemistry , In Situ Hybridization , Jejunum/metabolism , Kidney/metabolism , Molecular Sequence Data , RNA/metabolism , RNA, Messenger/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...