Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Neurosci ; 17: 1275229, 2023.
Article in English | MEDLINE | ID: mdl-38125404

ABSTRACT

Auditory verbal hallucinations (AVH) are the perfect illustration of phasic symptoms in psychiatric disorders. For some patients and in some situations, AVH cannot be relieved by standard therapeutic approaches. More advanced treatments are needed, among which neurofeedback, and more specifically fMRI-based neurofeedback, has been considered. This paper discusses the different possibilities to approach neurofeedback in the specific context of phasic symptoms, by highlighting the strengths and weaknesses of the available neurofeedback options. It concludes with the added value of the recently introduced information-based neurofeedback. Although requiring an online fMRI signal classifier, which can be quite complex to implement, this neurofeedback strategy opens a door toward an alternative treatment option for complex phasic symptomatology.

2.
J Neural Eng ; 18(5)2021 11 02.
Article in English | MEDLINE | ID: mdl-34725311

ABSTRACT

A brain-computer interface (BCI) aims to derive commands from the user's brain activity in order to relay them to an external device. To do so, it can either detect a spontaneous change in the mental state, in the so-called 'active' BCIs, or a transient or sustained change in the brain response to an external stimulation, in 'reactive' BCIs. In the latter, external stimuli are perceived by the user through a sensory channel, usually sight or hearing. When the stimulation is sustained and periodical, the brain response reaches an oscillatory steady-state that can be detected rather easily. We focus our attention on electroencephalography-based BCIs (EEG-based BCI) in which a periodical signal, either mechanical or electrical, stimulates the user skin. This type of stimulus elicits a steady-state response of the somatosensory system that can be detected in the recorded EEG. The oscillatory and phase-locked voltage component characterising this response is called a steady-state somatosensory-evoked potential (SSSEP). It has been shown that the amplitude of the SSSEP is modulated by specific mental tasks, for instance when the user focuses their attention or not to the somatosensory stimulation, allowing the translation of this variation into a command. Actually, SSSEP-based BCIs may benefit from straightforward analysis techniques of EEG signals, like reactive BCIs, while allowing self-paced interaction, like active BCIs. In this paper, we present a survey of scientific literature related to EEG-based BCI exploiting SSSEP. Firstly, we endeavour to describe the main characteristics of SSSEPs and the calibration techniques that allow the tuning of stimulation in order to maximise their amplitude. Secondly, we present the signal processing and data classification algorithms implemented by authors in order to elaborate commands in their SSSEP-based BCIs, as well as the classification performance that they evaluated on user experiments.


Subject(s)
Brain-Computer Interfaces , Brain , Electroencephalography , Evoked Potentials, Somatosensory , Signal Processing, Computer-Assisted
4.
J Neural Eng ; 3(4): 299-305, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17124334

ABSTRACT

This study assesses the relative performance characteristics of five established classification techniques on data collected using the P300 Speller paradigm, originally described by Farwell and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods: Pearson's correlation method (PCM), Fisher's linear discriminant (FLD), stepwise linear discriminant analysis (SWLDA) and a linear support vector machine (LSVM); and one nonlinear method: Gaussian kernel support vector machine (GSVM), are compared for classifying offline data from eight users. The relative performance of the classifiers is evaluated, along with the practical concerns regarding the implementation of the respective methods. The results indicate that while all methods attained acceptable performance levels, SWLDA and FLD provide the best overall performance and implementation characteristics for practical classification of P300 Speller data.


Subject(s)
Electroencephalography/classification , Event-Related Potentials, P300/physiology , Adult , Algorithms , Data Interpretation, Statistical , Discriminant Analysis , Female , Humans , Linear Models , Male , Middle Aged , Nonlinear Dynamics , Normal Distribution
5.
IEEE Trans Image Process ; 15(6): 1601-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16764284

ABSTRACT

Energy-based methods for motion estimation in image sequences process the input data either in the spatiotemporal or in the frequency domain. In both cases, the algorithms already described in the literature often require a huge number of elementary operations. In this paper, we describe a class of velocity selective filters which yield an accurate detection of the edges moving in the sequence. We first present a filtering scheme based on a convolution operation computed on a finite size neighborhood and describe its properties in the spatiotemporal and frequency domains. Then, we show that filters with similar properties can be implemented recursively, i.e., as convolutions computed on infinite-size neighborhoods. As an example, we finally show the filters' responses in the case of two superimposed translational motions.


Subject(s)
Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Information Storage and Retrieval/methods , Movement , Video Recording/methods , Algorithms , Subtraction Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...