Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 120: 304-317, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33212232

ABSTRACT

The advantages of microbial induced carbonate mineralization for soil-stabilization and building-material industries are under extensive investigation. The pH is one of the influential parameters on the desired calcium carbonate mineralization due to the resulting textures of this mineral. Moreover, the decrease in microbial growth under the extreme alkaline environment compatible with the sustainability of concrete has been the bottleneck for an effective application of Microbial Induced Carbonate Precipitation (MICP) in the concrete industry. Microbial consortia have shown more robustness in their resistance to environmental fluctuations than pure cultures. In addition, microorganisms obtained from alkaline environments could facilitate their adaptation to extreme alkalinity. The aim of this study was to obtain urease producing bacteria (UPB) able to maintain a high MICP performance under extremely alkaline conditions compatible with concrete by adapting native microorganisms obtained from extreme environments. The growth performance, urease activity, strength of the generated biocement, and CaCO3 mineralogy were compared with the best-performer urease-producing bacteria (UPB), S. pasteurii DSMZ 33. The native bacteria presented a similar performance in growth and urease activity than S. pasteurii under extreme alkaline conditions (pH 12.5). However, the generated biocement of native Sporosarcina sp. achieved 461 % more unconfined compressive strength (UCS) and 120 % more CaCO3 content than the biocement generated by S. pasteurii DSMZ 33. The careful adaptation process performed in this study for native UPB and S. pasteurii DSMZ 33 is an interesting approach with promising and projectable results for future engineering and biotechnological applications. These results have important implications for the design of engineering solutions involving MICP. STATEMENT OF SIGNIFICANCE: A consolidated and strong biocement was generated by a native species obtained from extreme ecosystems in an effort of bioprospecting to enhance the performance of biotechnological solutions for geotechnical applications in the concrete and soil-improvement industries. Biocement generated by the native species was stronger than the generated by one of the best-described biocementation performers. This native species was able to actively growing and do perform microbial-induced-carbonate-mineralization under extreme alkalinity conditions after a careful laboratory adaptation process. The native species presented unique and differentiating traits that gave it a better adaptability and biocementation performance. The same occurs with a priceless microbial diversity inhabiting little explored and unprotected extreme ecosystems. Extreme environments house a fascinating biodiversity with potential value for ecosystem services.


Subject(s)
Biomineralization , Sporosarcina , Bacteria , Calcium Carbonate , Ecosystem , Soil
2.
Front Microbiol ; 10: 148, 2019.
Article in English | MEDLINE | ID: mdl-30800103

ABSTRACT

This paper provides strong evidence for the contribution of the phylum Firmicutes in mediating the primary precipitation of Mg-rich carbonates (hydromagnesite, dolomite, magnesite, and nesquehonite) in recent microbialites from a highly alkaline and ephemeral inland lake (Las Eras, Central Spain). The carbonate mineral precipitation occurs sequentially as the microbial mats decay. Scanning electron microscopy (SEM) provided solid proof that hydromagnesite nucleation is initiated on the exopolymeric substances (EPS) and the microbial cells associated to the microbial mat degradation areas. The progressive mineralization of the EPS and bacterial cells by hydromagnesite plate-like crystals on their surface, results in the entombment of the bacteria and formation of radiating aggregates of hydromagnesite crystals. The hydrous phases, mostly hydromagnesite, were produced at a high percentage in the first stages of the microbial degradation of organic matter. When the availability of organic substrates declines, the heterotrophs tend to reduce their number and metabolic activity, remain dormant. At this stage, the anhydrous phases, dolomite and magnesite, nucleate on bacterial nanoglobules and/or collapsed cells. Evidence for the sequential formation of the Mg-rich carbonates trough the decay of organic matter by a fermentative EPS-forming bacterium isolated from the microbialites, Desemzia incerta, is drawn through a comparative analysis of carbonate formation in both natural and experimental settings. This study will help to constrain potential mechanisms of carbonate formation in natural systems, which are of fundamental importance not only for understanding modern environments but also as a window into the geologic past of Earth and potentially Mars.

SELECTION OF CITATIONS
SEARCH DETAIL
...