Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 8388, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26399523

ABSTRACT

Cilia are hair-like cellular protrusions important in many aspects of eukaryotic biology. For instance, motile cilia enable fluid movement over epithelial surfaces, while primary (sensory) cilia play roles in cellular signalling. The molecular events underlying cilia dynamics, and particularly their disassembly, are not well understood. Phosphatase and tensin homologue (PTEN) is an extensively studied tumour suppressor, thought to primarily act by antagonizing PI3-kinase signalling. Here we demonstrate that PTEN plays an important role in multicilia formation and cilia disassembly by controlling the phosphorylation of Dishevelled (DVL), another ciliogenesis regulator. DVL is a central component of WNT signalling that plays a role during convergent extension movements, which we show here are also regulated by PTEN. Our studies identify a novel protein substrate for PTEN that couples PTEN to regulation of cilia dynamics and WNT signalling, thus advancing our understanding of potential underlying molecular etiologies of PTEN-related pathologies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cilia/metabolism , Epithelial Cells/metabolism , PTEN Phosphohydrolase/metabolism , Phosphoproteins/metabolism , Animals , Cell Line , Dishevelled Proteins , Embryo, Nonmammalian , Humans , Immunoblotting , Immunoprecipitation , Mice , Microscopy, Confocal , Phosphatidylinositol 3-Kinases , Phosphorylation , Retina/cytology , Wnt Signaling Pathway , Xenopus Proteins , Xenopus laevis
2.
PLoS Genet ; 8(3): e1002578, 2012.
Article in English | MEDLINE | ID: mdl-22457636

ABSTRACT

MicroRNA (miRNA)-mediated gene regulation is of critical functional importance in animals and is thought to be largely constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155 regulation and demonstrate that these alleles are selected with different modes among human populations, causing a strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network in recent human evolution.


Subject(s)
Binding Sites , Biological Evolution , Membrane Glycoproteins , MicroRNAs , Oxidoreductases , Selection, Genetic , Adaptation, Biological/radiation effects , Alleles , Gene Expression Regulation , Gene Regulatory Networks , Humans , Membrane Glycoproteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidoreductases/metabolism , Polymorphism, Genetic , Selection, Genetic/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...