Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Polymers (Basel) ; 15(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679267

ABSTRACT

The management of food waste and by-products has become a challenge for the agri-food sector and an example are whey by-products produced in dairy industries. Seeking other whey valorisation alternatives and applications, whey protein films for food packaging applications were developed in this study. Films containing different amounts (0, 5, 10, and 15 wt%) of ascorbic acid were manufactured via compression-moulding and their physicochemical, thermal, barrier, optical, and mechanical properties were analysed and related to the film structure. Additionally, the environmental assessment of the films was carried out to analyse the impact of film manufacture. Regarding physicochemical properties, both FTIR and water uptake analyses showed the presence of non-covalent interactions, such as hydrogen bonding, between whey protein and ascorbic acid as band shifts at the 1500-1700 cm-1 region as well as a water absorption decrease from 380% down to 240% were observed. The addition of ascorbic acid notably improved the UV-Vis light absorbance capacity of whey protein films up to 500 nm, a relevant enhancement for protecting foods susceptible to UV-Vis light-induced lipid oxidation. In relation to the environmental assessment, it was concluded that scaling up film manufacture could lead to a reduction in the environmental impacts, mainly electricity consumption.

2.
Polymers (Basel) ; 12(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708371

ABSTRACT

Native collagen scaffolds were prepared in this work, in which both materials and environmental approaches were considered with the aim of providing a global strategy towards more sustainable biomaterials. From the environmental perspective, it is worth mentioning that acid and enzymatic treatments have been avoided to extract collagen, allowing the reduction in the use of resources, in terms of chemicals, energy, and time, and leading to a low environmental load of this step in all the impact categories under analysis. With the incorporation of chitosan into the scaffold-forming formulations, physical interactions occurred between collagen and chitosan, but the native collagen structure was preserved, as observed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. The incorporation of chitosan also led to more homogenous porous microstructures, with higher elastic moduli and compression resistance for both dry and hydrated scaffolds. Furthermore, hydrated scaffolds preserved their size and shape after some compression cycles.

3.
Sci Total Environ ; 706: 135747, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31806316

ABSTRACT

Marine-derived biowaste was valorized to develop chitin/fish gelatin porous materials with the aim of being used as moisture scavengers and bioactive carriers. Chitin was extracted from squid pens, abundant and available biowastes from fishery industry, through a sustainable process and the environmental assessment was carried out. Besides the valorization of biowaste, it is worth noting that the use of this specific biowaste allows the avoidance of discoloration and demineralization processes to extract chitin and, thus, a lower consumption of resources, both chemicals and energy, in comparison to the conventional chitin extraction from crustacean shells. Consequently, this alternative source of chitin brings economic and environmental benefits. In addition to the reduction of food waste disposal, the incorporation of squid pen-extracted chitin into fish gelatin formulations led to the conversion of a biowaste into a value-added product. In this regard, chitin was employed as a reinforcing agent in order to improve the mechanical behavior of fish gelatin materials. It is worth noting that good compatibility between gelatin and chitin was achieved since no chitin aggregation was observed. Furthermore, more defined pores were obtained after chitin addition. Additionally, tetrahydrocurcumin was incorporated into the formulation as a bioactive and its release was analyzed during three days. It was observed that samples prepared with chitin and THC showed potential as active porous materials for bioactive delivery.


Subject(s)
Fisheries , Animals , Chitin , Gelatin , Refuse Disposal , Seafood
SELECTION OF CITATIONS
SEARCH DETAIL
...