Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 26(7): 1667-1677, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31806643

ABSTRACT

PURPOSE: Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approaches for treatment. We sought to evaluate commonalities between SCNPC and other aggressive neuroendocrine carcinomas to identify therapeutic targets. EXPERIMENTAL DESIGN: We generated whole transcriptome RNA-sequencing data from AR-active prostate cancers (ARPCs) and SCNPCs from tumors collected at rapid autopsy and two other neuroendocrine carcinomas, Merkel cell carcinoma (MCC), and small-cell lung cancer. We performed cross-tumor comparisons to identify conserved patterns of expression of druggable targets. We tested inhibitors to highly upregulated drug targets in a panel of prostate cancer cell lines and in vivo patient-derived xenograft (PDX) models. RESULTS: We identified BCL2 as highly upregulated in SCNPC compared with ARPC. Inhibitors targeting BCL2 induced apoptotic cell death in SCNPC cell lines at nanomolar concentrations while ARPC cell lines were resistant. Treatment with the BCL2 inhibitor navitoclax leads to a reduction of growth of SCNPC PDX tumors in vivo, whereas ARPC PDX models were more resistant. We identified Wee1 as a second druggable target upregulated in SCNPC. Treatment with the combination of navitoclax and the Wee1 inhibitor AZD-1775 repressed the growth of SCNPC PDX resistant to single-agent BCL2 inhibitors. CONCLUSIONS: The combination of BCL2 and Wee1 inhibition presents a novel therapeutic strategy for the treatment of SCNPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Neuroendocrine/pathology , Carcinoma, Small Cell/pathology , Cell Cycle Proteins/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/pathology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...