Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5205, 2024 03 03.
Article in English | MEDLINE | ID: mdl-38433278

ABSTRACT

Hepatic fibrosis is driven by the activation of hepatic stellate cells (HSCs). The Hippo pathway and its effectors, YAP and TAZ, are key regulators of HSC activation and fibrosis. However, there is a lack of mechanistic understanding of YAP/TAZ regulation in HSCs. Here we show that AMPK activation leads to YAP/TAZ inhibition and HSC inactivation in vitro, while the expression of a kinase-inactive mutant reversed these effects compared to wild type AMPKɑ1. Notably, the depletion of LATS1/2, an upstream kinase of YAP/TAZ signaling, rescues YAP/TAZ activation, suggesting that AMPK may be mediating YAP/TAZ inhibition via LATS1/2. In the carbon tetrachloride mouse model of fibrosis, pharmacologic activation of AMPK in HSCs inhibits YAP/TAZ signaling and reduces fibrosis. The findings implicate AMPK as a critical regulator of YAP/TAZ signaling and HSC inactivation and highlight AMPK activation as a therapeutic target for the treatment of hepatic fibrosis.


Subject(s)
AMP-Activated Protein Kinases , Liver Cirrhosis , Animals , Mice , Hippo Signaling Pathway , Protein Serine-Threonine Kinases/genetics , Signal Transduction
2.
Front Med (Lausanne) ; 9: 881848, 2022.
Article in English | MEDLINE | ID: mdl-36275798

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide, and is characterized by the accumulation of fat in the liver. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a leading cause of liver transplantation. Fibrosis is the histologic feature most associated with liver-related morbidity and mortality in patients with NASH, and treatment options remain limited. In previous studies, we discovered that acid ceramidase (aCDase) is a potent antifibrotic target using human hepatic stellate cells (HSCs) and models of hepatic fibrogenesis. Using two dietary mouse models, we demonstrate that depletion of aCDase in HSC reduces fibrosis without worsening metabolic features of NASH, including steatosis, inflammation, and insulin resistance. Consistently, pharmacologic inhibition of aCDase ameliorates fibrosis but does not alter metabolic parameters. The findings suggest that targeting aCDase is a viable therapeutic option to reduce fibrosis in patients with NASH.

SELECTION OF CITATIONS
SEARCH DETAIL
...