Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(18): 7998-8008, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629179

ABSTRACT

Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms. Our experiment included three polymers of microplastics (PE, PS, and PET) ranging in density and size. Nominal concentrations ranged from 0 to 29,240 microplastics per liter on a log scale. Mesocosms enclosed natural microbial, phytoplankton, and zooplankton communities and yellow perch (Perca flavescens). We quantified and characterized microplastics in the water column and in components of the food web (biofilm on the walls, zooplankton, and fish). The microplastics in the water stratified vertically according to size and density. After 10 weeks, about 1% of the microplastics added were in the water column, 0.4% attached to biofilm on the walls, 0.01% within zooplankton, and 0.0001% in fish. Visual observations suggest the remaining >98% were in a surface slick and on the bottom. Our study suggests organisms that feed at the surface and in the benthos are likely most at risk, and demonstrates the value of measuring exposure and transport to inform experimental designs and achieve target concentrations in different matrices within toxicity tests.


Subject(s)
Microplastics , Water Pollutants, Chemical , Zooplankton , Animals , Lakes , Ecosystem , Food Chain , Environmental Monitoring , Phytoplankton , Perches/metabolism
2.
ISME J ; 17(6): 903-915, 2023 06.
Article in English | MEDLINE | ID: mdl-37031343

ABSTRACT

Meromictic Lake Cadagno is a permanently stratified system with a persistent microbial bloom within the oxic-anoxic boundary called the chemocline. The association between oxygenic and anoxygenic photosynthesis within the chemocline has been known for at least two decades. Although anoxygenic purple and green sulfur bacteria have been well studied, reports on oxygenic phytoplankton have remained sparse since their discovery in the 1920s. Nearly a century later, this study presents the first near-complete genome of a photosynthetic microbial eukaryote from the chemocline of Lake Cadagno, provisionally named Chlorella-like MAG. The 18.9 Mbp nuclear genome displays a high GC content (71.5%), and the phylogenetic placement suggests that it is a novel species of the genus Chlorella of Chlorophytes. Functional annotation of the Chlorella-like metagenome-assembled genome predicted 10,732 protein-coding genes, with an approximate 0.6% proportion potentially involved in carbon, sulfur, and nitrogen (C, N, and S) metabolism. In addition to C4 photosynthesis, this study detected genes for heat shock proteins (HSPs) in the Chlorella-like algae, consistent with the other Chlorella species. Altogether, the genomic insights in this study suggest the cooperation of photosynthetic algae with phototrophic sulfur bacteria via C, N, and S metabolism, which may aid their collective persistence in the Lake Cadagno chemocline. Furthermore, this work additionally presents the chloroplast genome of Cryptomonas-like species, which was likely to be presumed as cyanobacteria in previous studies because of the presence of phycobilisomes.


Subject(s)
Chlorella , Lakes , Lakes/microbiology , Chlorella/genetics , Phylogeny , Bacteria/metabolism , Genomics , Sulfur/metabolism
3.
mBio ; 13(4): e0005222, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35726916

ABSTRACT

Lake Cadagno, a permanently stratified high-alpine lake with a persistent microbial bloom in its chemocline, has long been considered a model for the low-oxygen, high-sulfide Proterozoic ocean. Although the lake has been studied for over 25 years, the absence of concerted study of the bacteria, phytoplankton, and viruses, together with primary and secondary production, has hindered a comprehensive understanding of its microbial food web. Here, the identities, abundances, and productivity of microbes were evaluated in the context of Lake Cadagno biogeochemistry. Photosynthetic pigments together with 16S rRNA gene phylogenies suggest the prominence of eukaryotic phytoplankton chloroplasts, primarily chlorophytes. Chloroplasts closely related to those of high-alpine-adapted Ankyra judayi persisted with oxygen in the mixolimnion, where photosynthetic efficiency was high, while chloroplasts of Closteriopsis-related chlorophytes peaked in the chemocline and monimolimnion. The anoxygenic phototrophic sulfur bacterium Chromatium dominated the chemocline along with Lentimicrobium, a genus of known fermenters. Secondary production peaked in the chemocline, which suggested that anoxygenic primary producers depended on heterotrophic nutrient remineralization. The virus-to-microbe ratio peaked with phytoplankton abundances in the mixolimnion and were at a minimum where Chromatium abundance was highest, trends that suggest that viruses may play a role in the modulation of primary production. Through the combined analysis of bacterial, eukaryotic, viral, and biogeochemical spatial dynamics, we provide a comprehensive synthesis of the Lake Cadagno microbial loop. This study offers a new ecological perspective on how biological and geochemical connections may have occurred in the chemocline of the Proterozoic ocean, where eukaryotic microbial life is thought to have evolved. IMPORTANCE As a window into the past, this study offers insights into the potential role that microbial guilds may have played in the production and recycling of organic matter in ancient Proterozoic ocean chemoclines. The new observations described here suggest that chloroplasts of eukaryotic algae were persistent in the low-oxygen upper chemocline along with the purple and green sulfur bacteria known to dominate the lower half of the chemocline. This study provides the first insights into Lake Cadagno's viral ecology. High viral abundances suggested that viruses may be essential components of the chemocline, where their activity may result in the release and recycling of organic matter. The integration of diverse geochemical and biological data types provides a framework that lays the foundation to quantitatively resolve the processes performed by the discrete populations that comprise the microbial loop in this early anoxic ocean analogue.


Subject(s)
Lakes , Phytoplankton , Bacteria/genetics , Lakes/microbiology , Oceans and Seas , Oxygen , RNA, Ribosomal, 16S/genetics
4.
mSphere ; 6(3): e0085120, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34106771

ABSTRACT

While it is now appreciated that the millions of tons of plastic pollution travelling through marine systems carry complex communities of microorganisms, it is still unknown to what extent these biofilm communities are specific to the plastic or selected by the surrounding ecosystem. To address this, we characterized and compared the microbial communities of microplastic particles, nonplastic (natural and wax) particles, and the surrounding waters from three marine ecosystems (the Baltic, Sargasso and Mediterranean seas) using high-throughput 16S rRNA gene sequencing. We found that biofilm communities on microplastic and nonplastic particles were highly similar to one another across this broad geographical range. The similar temperature and salinity profiles of the Sargasso and Mediterranean seas, compared to the Baltic Sea, were reflected in the biofilm communities. We identified plastic-specific operational taxonomic units (OTUs) that were not detected on nonplastic particles or in the surrounding waters. Twenty-six of the plastic-specific OTUs were geographically ubiquitous across all sampled locations. These geographically ubiquitous plastic-specific OTUs were mostly low-abundance members of their biofilm communities and often represented uncultured members of marine ecosystems. These results demonstrate the potential for plastics to be a reservoir of rare and understudied microbes, thus warranting further investigations into the dynamics and role of these microbes in marine ecosystems. IMPORTANCE This study represents one of the largest comparisons of biofilms from environmentally sampled plastic and nonplastic particles from aquatic environments. By including particles sampled through three separate campaigns in the Baltic, Sargasso, and Mediterranean seas, we were able to make cross-geographical comparisons and discovered common taxonomical signatures that define the plastic biofilm. For the first time, we identified plastic-specific bacteria that reoccur across marine regions. Our data reveal that plastics have selective properties that repeatedly enrich for similar bacteria regardless of location, potentially shifting aquatic microbial communities in areas with high levels of plastic pollution. Furthermore, we show that bacterial communities on plastic do not appear to be strongly influenced by polymer type, suggesting that other properties, such as the absorption and/or leaching of chemicals from the surface, are likely to be more important in the selection and enrichment of specific microorganisms.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Microbiota , Plastics , Seawater/microbiology , Bacteria/metabolism , Biofilms/growth & development , Geography , RNA, Ribosomal, 16S , Water Pollutants, Chemical/analysis
5.
Microorganisms ; 8(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322799

ABSTRACT

Organic ligands such as exopolymeric substances (EPS) are known to form complexes with iron (Fe) and modulate phytoplankton growth. However, the effect of organic ligands on bacterial and viral communities remains largely unknown. Here, we assessed how Fe associated with organic ligands influences phytoplankton, microbial, and viral abundances and their diversity in the Southern Ocean. While the particulate organic carbon (POC) was modulated by Fe chemistry and bioavailability in the Drake Passage, the abundance and diversity of microbes and viruses were not governed by Fe bioavailability. Only following amendments with bacterial EPS did bacterial abundances increase, while phenotypic alpha diversity of bacterial and viral communities decreased. The latter was accompanied by significantly enhanced POC, pointing toward the relief of C limitation or other drivers of the microbial loop. Based on the literature and our findings, we propose a conceptual framework by which EPS may affect phytoplankton, bacteria, and viruses. Given the importance of the Southern Ocean for Earth's climate as well as the prevalence of viruses and their increasingly recognized impact on marine biogeochemistry and C cycling; the role of microbe-virus interactions on primary productivity in the Southern Ocean needs urgent attention.

6.
Antonie Van Leeuwenhoek ; 96(3): 331-42, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19449210

ABSTRACT

We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.


Subject(s)
Antibiosis , Ants/microbiology , Ascomycota/physiology , Yeasts/isolation & purification , Yeasts/physiology , Animals , Molecular Sequence Data , Yeasts/classification , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...