Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(21): 14856-14863, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38717994

ABSTRACT

Uranyl fluoride (UO2F2) particles (<20 µm) were subjected to first-of-its-kind analysis via simultaneous laser-induced breakdown spectroscopy (LIBS) and laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). Briefly, a nanosecond pulsed high-energy laser was focused onto the sample (particle) surface. In a single laser pulse, the UO2F2 particle was excited/ionized within the microplasma volume, and the emission of light was collected via fiber optics such that emission spectroscopy could be employed for the detection of uranium (U) and fluorine (F). The ablated particle was simultaneously transported into the MC-ICP-MS for high precision isotopic (i.e., 234U, 235U, and 238U) analysis. This method, LIBS/LA-MC-ICP-MS was optimized and employed to rapidly measure 80+ UO2F2 particles, which were subjected to different calcination processes, which results in varying degrees of F loss from the individual particles. In measuring the particles, the average F/U ratios for the populations treated at 100 and 500 °C were 2.78 ± 1.28 and 1.01 ± 0.50, respectively, confirming loss of F through the calcination process. The average 235U/238U on the particle populations for the 100 and 500 °C were 0.007262 (22) and 0.007231 (23), which was determined to be <0.2% from the expected value. The 234U/238U ratios on the same particles were 0.000053 (11) and 0.000050 (10) for the 100 and 500 °C, respectively, <10% from the expected value. Notably, each population was analyzed in under 5 min, demonstrating the truly rapid analysis technique presented here.

2.
Anal Chem ; 95(32): 12131-12138, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37466149

ABSTRACT

Plutonium measurements are essential to the nuclear forensics and safeguards community. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source coupled with an Orbitrap mass spectrometer is a proven platform for uranium isotope ratio determinations. This work expands the LS-APGD-Orbitrap platform capabilities by reporting the first-ever analysis of plutonium with the LS-APGD and the first-ever measurement of elemental plutonium with an Orbitrap mass spectrometer. This coupling has the potential to dramatically reduce the complex sample manipulations required for traditional analysis techniques employed for actinide isotope ratio determinations. As a first step toward the goal of simultaneous uranium and plutonium isotope ratio determinations, the initial characterization and optimization of the platform for the detection of plutonium are reported. Collision-induced dissociation modality settings were optimized to reduce water-related and other molecular clusters containing plutonium, maximizing 242Pu16O2+ responses. A design of experiments study was conducted to optimize the discharge conditions of the dual-electrode LS-APGD toward the responsivity of 242Pu16O2+. The measurement sensitivity was determined from a Pu response curve, yielding a limit of detection of 10 fg (absolute) of total analyte when data was collected and processed with a Spectroswiss FTMS Booster X2 data acquisition system. Additionally, plutonium and uranium were measured in a simultaneous acquisition, and each analyte remained unaffected by the other. It is believed that the LS-APGD-Orbitrap platform could be a valuable addition to the nuclear forensics' toolbox and, indeed, other scientific disciplines and regulatory communities in which rapid, high-resolution plutonium determinations are paramount.

3.
Anal Chem ; 92(12): 8591-8598, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32501709

ABSTRACT

The collection of solid particulates and liquids from surfaces by the use of cloth swipes is fairly ubiquitous. In such methods, there is a continuous concern regarding the ability to locate and quantitatively sample the analyte species from the material. In this effort, we demonstrate the initial coupling of an Advion Plate Express plate reader to a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source with an Orbitrap mass spectrometer to perform uranium isotopic analyses of solution residues on cotton swipes. The Plate Express employs a sampling probe head to engage and seal against the swipe surface. Subsequentially, the analyte residues are desorbed and transported within a 2% HNO3 electrolyte flow to the ionization source. Quantitative recoveries were observed following a single 30 s extraction step, with the absolute mass sampled per extraction being ∼100 ng. While the intrasample variability in the analytical responses for triplicate sampling of the same swipe yield ∼30% RSD, this lack of precision is offset by the ability to determine isotope ratios for enriched uranium specimens with a precision of better than 10% RSD. Pooled, intersample precision (n = 9) was found to be <5%RSD across the various sample compositions. Finally, 235U/238U determinations (ranging from 0.053 to 1.806) were accurate with errors of <10%, absolute. The 234U- and 236U-inclusive ratios were determined with similar accuracy in enriched samples. While the driving force for the effort is in the realm of nuclear nonproliferation efforts, the ubiquitous use of cloth swipes across many application areas could benefit from this convenient approach, including the use of versatile, reduced-format mass spectrometer systems.


Subject(s)
Gossypium/chemistry , Textiles/analysis , Uranium/analysis , Atmospheric Pressure , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...