Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 170: 112989, 2023 08.
Article in English | MEDLINE | ID: mdl-37316020

ABSTRACT

Listeria monocytogenes has a range of strategies that allow it to persist as biofilms in food processing environments (FPE), making it a pathogen of concern to the food industry. The properties of these biofilms are highly variable among strains, and this significantly affects the risk of food contamination. The present study therefore aims to conduct a proof-of-concept study to cluster strains of L. monocytogenes by risk potential using principal component analysis, a multivariate approach. A set of 22 strains, isolated from food processing environments, were typed by serogrouping and pulsed-field gel electrophoresis, showing a relatively high diversity. They were characterized in terms of several biofilm properties that might pose a potential risk of food contamination. The properties studied were tolerance to benzalkonium chloride (BAC), the structural parameters of biofilms (biomass, surface area, maximum and average thickness, surface to biovolume ratio and roughness coefficient) measured by confocal laser scanning microscopy and (3) transfer of biofilm cells to smoked salmon. The PCA correlation circle revealed that the tolerance of biofilms to BAC was positively correlated with roughness, but negatively with biomass parameters. On the contrary, cell transfers were not related to three-dimensional structural parameters, which suggests the role of other variables yet unexplored. Additionally, hierarchical clustering grouped strains into three different clusters. One of them included the strains with high tolerance to BAC and roughness. Another one consisted of strains with enhanced transfer ability, whereas the third cluster contained those that stood out for the thickness of biofilms. The present study represents a novel and effective way to classify L. monocytogenes strains according to biofilm properties that condition the potential risk of reaching the consumer through food contamination. It would thus allow the selection of strains representative of different worst-case scenarios for future studies in support of QMRA and decision-making analysis.


Subject(s)
Listeria monocytogenes , Principal Component Analysis , Food Handling , Benzalkonium Compounds , Cluster Analysis , Risk Factors
3.
Int J Food Microbiol ; 360: 109441, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34717152

ABSTRACT

Biofilms pose a serious challenge to the food industry. Higher resistance of biofilms to any external stimuli is a major hindrance for their eradication. In this study, we compared the growth dynamics and benzalkonium chloride (BAC) resistance of dual species Listeria monocytogenes-Escherichia coli 48 h biofilms formed on stainless steel (SS) coupons surfaces under batch and fed-batch cultures. Differences between both operational culture conditions were evaluated in terms of total viable adhered cells (TVAC) in the coupons during 48 h of the mixed-culture and of reduction of viable adhered cells (RVAC) obtained after BAC-treatment of a 48 h biofilm of L. monocytogenes-E. coli formed under both culture conditions. Additionally, epifluorescence microscopy (EFM) and confocal scanning microscopy (CLSM) permitted to visualize the 2D and 3D biofilms structure, respectively. Observed results showed an increase in the TVAC of both strains during biofilm development, being the number of E. coli adhered cells higher than L. monocytogenes in both experimental systems (p < 0.05). Additionally, the number of both strains were higher approximately 2.0 log CFU/coupon in batch conditions compared to fed-batch system (p < 0.05). On the contrary, significantly higher resistance to BAC was observed in biofilms formed under fed-batch conditions. Furthermore, in batch system both strains had a similar reduction level of approximately 2.0 log CFU/coupon, while significantly higher resistance of E. coli compared to L. monocytogenes (reduction level of 0.69 and 1.72 log CFU/coupon, respectively) (p < 0.05) was observed in fed-batch system. Microscopic image visualization corroborated these results and showed higher complexity of 2D and 3D structures in dual species biofilms formed in batch cultures. Overall, we can conclude that the complexity of the biofilm structure does not always imply higher resistance to external stimuli, and highlights the need to mimic industrial operational conditions in the experimental systems in order to better assess the risk associated to the presence of pathogenic bacterial biofilms.


Subject(s)
Benzalkonium Compounds , Listeria monocytogenes , Benzalkonium Compounds/pharmacology , Biofilms , Colony Count, Microbial , Escherichia coli , Food Microbiology , Stainless Steel/analysis
4.
Int J Food Microbiol ; 315: 108439, 2020 Feb 16.
Article in English | MEDLINE | ID: mdl-31710972

ABSTRACT

The variation in microbial composition over time was assessed in biofilms formed in situ on selected non-food and food contact surfaces of meat and fish industries, previously identified as Listeria monocytogenes-positive foci. First, all samples were analysed for the detection and quantification of L. monocytogenes using ISO 11290-1 and ISO 11290-2 norms, respectively. Although the pathogen was initially detected in all samples, direct quantification was not possible. Psychrotrophic bacteria counts were among resident microbiota in meat industry samples (Meanmax = 6.14 log CFU/cm2) compared to those form fish industry (Meanmax = 5.85 log CFU/cm2). Visual analysis of the biofilms using epifluorescence microscopy revealed a trend to form microcolonies in which damaged/dead cells would act as anchoring structures. 16S rRNA gene metagenetic analysis demonstrated that, although Proteobacteria (71.37%) initially dominated the bacterial communities at one meat industry location, there was a dramatic shift in composition as the biofilms matured, where Actinobacteria (79.72%) became the major phylum present in later samples. This change was largely due to an increase of Nocardiaceae, Micrococcaceae and Microbacteriaceae. Nevertheless, for the other sampling location, the relative abundance of the dominating phylum (Firmicutes) remained consistent over the entire sampling period (Mean = 63.02%). In fish industry samples, Proteobacteria also initially dominated early on (90.69%) but subsequent sampling showed a higher diversity in which Bacteroidetes and Proteobacteria were the most abundant phyla accounting for the 48.04 and 37.98%, respectively by the last sampling period. Regardless of the location, the community profiles of the endpoint samples were similar to those reported previously. This demonstrated that in a given industrial setting there is a trend to establish a determinate biofilm structure due to the environmental factors and the constant incoming microbiota. This information could be used to improve the existing sanitisation protocols or for the design of novel strategies.


Subject(s)
Biofilms/growth & development , Fish Products/microbiology , Listeria monocytogenes/isolation & purification , Meat Products/microbiology , Meat/microbiology , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Firmicutes/genetics , Firmicutes/isolation & purification , Food Microbiology , Food-Processing Industry , Listeria monocytogenes/genetics , Microbiota/genetics , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
5.
Foods ; 8(12)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817522

ABSTRACT

Furanones are analogues of acylated homoserine lactones with proven antifouling activity in both Gram-positive and Gram-negative bacteria though the interference of various quorum sensing pathways. In an attempt to find new strategies to prevent and control Listeria monocytogenes biofilm formation on stainless steel (SS) surfaces, different concentrations of six synthetic furanones were applied on biofilms formed by strains isolated from food, environmental, and clinical sources grown onto AISI 316 SS coupons. Among the furanones tested, (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone and 3,4-Dichloro-2(5H)-furanone significantly (p < 0.05) reduced the adhesion capacity (>1 log CFU cm-2) in 24 h treated biofilms. Moreover, individually conducted experiments demonstrated that (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone was able to not only significantly (p < 0.05) prevent L. monocytogenes adhesion but also to reduce the growth rate of planktonic cells up to 48 h in a dose-dependent manner. LIVE/DEAD staining followed by epifluorescence microscopy visualisation confirmed these results show an alteration of the structure of the biofilm in furanone-treated samples. Additionally, it was demonstrated that 20 µmol L-1 of 3,4-Dichloro-2(5H)-furanone dosed at 0, 24 and 96 h was able to maintain a lower level of adhered cells (>1 log CFU cm-2; p < 0.05). Since furanones do not pose a selective pressure on bacteria, these results represent an appealing novel strategy for the prevention of L. monocytogenes biofilm grown onto SS.

6.
Food Microbiol ; 67: 58-66, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28648294

ABSTRACT

This study was designed to assess the effects that sublethal exposures to pronase (PRN) and benzalkonium chloride (BAC) combined treatments have on Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel in terms of tolerance development (TD) to these compounds. Additionally, fluorescence microscopy was used to observe the changes of the biofilm structure. PRN-BAC exposure was carried out using three different approaches and TD was evaluated treating biofilms with a final 100 µg/ml PRN followed by 50 µg/ml BAC combined treatment. Results showed that exposure to PRN-BAC significantly decreased the number of adhered L. monocytogenes (P < 0.05), while E. coli counts remained generally unaltered. It was also demonstrated that the incorporation of recovery periods during sublethal exposures increased the tolerance of both species of the mixed biofilm to the final PRN-BAC treatment. Moreover, control biofilms became more resistant to PRN-BAC if longer incubation periods were used. Regardless of the treatment used, log reduction values were generally lower in L. monocytogenes compared to E. coli. Additionally, microscopy images showed an altered morphology produced by sublethal PRN-BAC in exposed L. monocytogenes-E. coli dual-species biofilms compared to control samples. Results also demonstrated that L. monocytogenes-E. coli dual-species biofilms are able to develop tolerance to PRN-BAC combined treatments depending on way they have been previously exposed. Moreover, they suggest that the generation of bacterial tolerance should be included as a parameter for sanitation procedures design.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzalkonium Compounds/pharmacology , Biofilms/drug effects , Escherichia coli/drug effects , Listeria monocytogenes/drug effects , Pronase/pharmacology , Anti-Bacterial Agents/analysis , Benzalkonium Compounds/analysis , Escherichia coli/growth & development , Escherichia coli/physiology , Listeria monocytogenes/growth & development , Listeria monocytogenes/physiology , Microbial Viability/drug effects , Pronase/analysis
7.
Appl Environ Microbiol ; 78(24): 8547-54, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23023749

ABSTRACT

Biofilms are a common cause of food contamination with undesirable bacteria, such as pathogenic bacteria. Staphylococcus aureus is one of the major bacteria causing food-borne diseases in humans. A study designed to determine the presence of S. aureus on food contact surfaces in dairy, meat, and seafood environments and to identify coexisting microbiota has therefore been carried out. A total of 442 samples were collected, and the presence of S. aureus was confirmed in 6.1% of samples. Sixty-three S. aureus isolates were recovered and typed by random amplification of polymorphic DNA (RAPD). Profiles were clustered into four groups which were related to specific food environments. All isolates harbored some potential virulence factors such as enterotoxin production genes, biofilm formation-associated genes, antibiotic resistance, or lysogeny. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints of bacterial communities coexisting with S. aureus revealed the presence of bacteria either involved in food spoilage or of concern for food safety in all food environments. Food industry surfaces could thus be a reservoir for S. aureus forming complex communities with undesirable bacteria in multispecies biofilms. Uneven microbiological conditions were found in each food sector, which indicates the need to improve hygienic conditions in food processing facilities, particularly the removal of bacterial biofilms, to enhance the safety of food products.


Subject(s)
Environmental Microbiology , Food Industry , Staphylococcus aureus/isolation & purification , Biofilms/growth & development , Cluster Analysis , Drug Resistance, Bacterial , Genotype , Humans , Incidence , Lysogeny , Molecular Typing , Random Amplified Polymorphic DNA Technique , Staphylococcus aureus/classification , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology , Virulence Factors/genetics
8.
Biotechnol Appl Biochem ; 41(Pt 3): 209-16, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15330763

ABSTRACT

The most common method in the routine determination of uronic acids, the m-hydroxydiphenyl reaction, recently adapted to rapid microplate analysis, has as a main inconvenience, in any one of their modalities, interferences due to the frequent presence of proteins and neutral carbohydrates in the samples. Corresponding corrections in the literature are unsatisfactory when applied to complex matrices, and further adaptation to the microplate analysis is not free from additional problems. With particular reference to hyaluronic acid, the interactions between the principal reactants and the interfering materials are studied kinetically under realistic conditions, and simple mathematical models are proposed which satisfactorily describe the experimental results and allow adequate corrections to be made.


Subject(s)
Carbohydrates/analysis , Chemistry Techniques, Analytical/methods , Models, Theoretical , Proteins/analysis , Uronic Acids/analysis , Animals , Biphenyl Compounds , Glucose/analysis , Hyaluronic Acid/isolation & purification , Hydrogen-Ion Concentration , Mathematics , Perciformes , Sharks
SELECTION OF CITATIONS
SEARCH DETAIL
...