Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Rev ; 15(4): 685-697, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681106

ABSTRACT

The unbridled use of antimicrobial drugs over the last decades contributed to the global dissemination of drug-resistant pathogens and increasing rates of life-threatening infections for which limited therapeutic options are available. Currently, the search for safe, fast, and effective therapeutic strategies to combat infectious diseases is a worldwide demand. Antimicrobial photodynamic therapy (APDT) rises as a promising therapeutic approach against a wide range of pathogenic microorganisms. APDT combines light, a photosensitizing drug (PS), and oxygen to kill microorganisms by oxidative stress. Since the APDT field involves branches of biology and physics, the strengthening of interdisciplinary collaborations under the aegis of biophysics is welcome. Given this scenario, Brazil is one of the global leaders in the production of APDT science. In this review, we provide detailed reports of APDT studies published by the Laboratory of Optical Therapy (IPEN-CNEN), Group of Biomedical Nanotechnology (UFPE), and collaborators over the last 10 years. We present an integrated perspective of APDT from basic research to clinical practice and highlight its promising use, encouraging its adoption as an effective and safe technology to tackle important pathogens. We cover the use of methylene blue (MB) or Zn(II) porphyrins as PSs to kill bacteria, fungi, parasites, and pathogenic algae in laboratory assays. We describe the impact of MB-APDT in Dentistry and Veterinary Medicine to treat different infectious diseases. We also point out future directions combining APDT and nanotechnology. We hope this review motivates further APDT studies providing intuitive, vivid, and insightful information for the readers.

2.
Photodiagnosis Photodyn Ther ; 38: 102769, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35183783

ABSTRACT

BACKGROUND: Methylene blue (MB)-mediated photodynamic inactivation (PDI) has shown good results in killing Candida spp. Although MB solutions are commonly used, new formulations have been designed to improve PDI. However, chemical substances in the formulation may interfere with the PDI outcome. In this sense, different methodologies should be used to evaluate PDI in vitro. Herein, we report different methodologies to evaluate the effects of PDI with an oral formulation (OF) containing 0.005% MB on Candida albicans biofilm. METHODS: Biofilms were treated using the MB-OF, with 5 min pre-irradiation time and exposure to a 640 nm LED device (4.7 J/cm2). PDI was evaluated by the XTT reduction test, counting the colony forming units (CFU), a filamentation assay, crystal violet (CV) staining, and scanning electronic microscopy (SEM). RESULTS: PDI was able to reduce around 1.5 log10 CFU/mL, even though no significant differences were noted in metabolic activity in comparison to the control immediately after PDI. A significant decrease in yeast to hyphae transition was observed after PDI, while the biofilm exhibited flattened cells and a reduced number of yeasts in SEM. The CV assay showed increased biomass. CONCLUSION: MB-OF-mediated PDI was effective in C. albicans biofilms, as it significantly reduced the CFU/mL and the virulence of surviving cells. The CV data were inconclusive, since the OF components interacted with the CV, making the data useless. Taken together, our data suggest that the association of different methods allows complementary responses to assess how PDI mediated by a formulation impacts biofilms.


Subject(s)
Candida albicans , Photochemotherapy , Biofilms , Candida , Methylene Blue/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology
3.
J Photochem Photobiol B ; 221: 112236, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34090038

ABSTRACT

Cutaneous leishmaniasis (CL) is a neglected disease that represents a serious global public health concern. We performed a systematic review with meta-analysis targeting the use of light-based therapies on CL in preclinical studies since they are essential to identify the benefits, challenges, and limitations of proposing new technologies to fight CL. We searched Pubmed and Web of Science to include original preclinical researches in English that used light-based technologies to fight CL. Inclusion criteria encompassed any animal model for CL induction, an untreated infected group as the comparator, reliable and consistent methodology to develop and treat CL, focus on an antimicrobial therapeutic approach, and data for lesion size and/or parasite load in the infection site. We identified eight eligible articles, and all of them used photodynamic therapy (PDT). For the meta-analysis, three studies were included regarding the parasite load in the infection site and four comprised the lesion size. No overall statistically significant differences were observed between untreated control and PDT groups for parasite load. Differently, PDT significantly reduced the lesion size regardless of the protocol used to treat CL (in mm, SMD: -1.90; 95% CI: -3.74 to -0.07, p = 0.04). This finding is particularly encouraging since CL promotes disfiguring lesions that profoundly affect the quality of life of patients. We conclude that PDT is a new promising technology able to be topically used against CL if applied in more than one session, making it a promising ally for the management of CL.


Subject(s)
Leishmaniasis, Cutaneous/drug therapy , Light , Photosensitizing Agents/therapeutic use , Animals , Databases, Factual , Disease Models, Animal , Parasite Load , Photochemotherapy
4.
J Biophotonics ; 9(11-12): 1157-1166, 2016 12.
Article in English | MEDLINE | ID: mdl-27322660

ABSTRACT

Ionizing radiation (IR) induces DNA damage and low-level laser therapy (LLLT) has been investigated to prevent or repair detrimental outcomes resulting from IR exposure. Few in vitro studies, however, explore the biological mechanisms underlying those LLLT benefits. Thus, in this work, fibroblasts and tumor cells are submitted to IR with doses of 2.5 Gy and 10 Gy. After twenty-four-h, the cells are exposed to LLLT with fluences of 30 J cm-2 , 90 J cm-2 , and 150 J cm-2 . Cellular viability, cell cycle phases, cell proliferation index and senescence are evaluated on days 1 and 4 after LLLT irradiation. For fibroblasts, LLLT promotes - in a fluence-dependent manner - increments in cell viability and proliferation, while a reduction in the senescence was observed. Regarding tumor cells, no influences of LLLT on cell viability are noticed. Whereas LLLT enhances cell populations in S and G2 /M cell cycle phases for both cellular lines, a decrease in proliferation and increase in senescence was verified only for tumor cells. Putting together, the results suggest that fibroblasts and tumor cells present different responses to LLLT following exposure to gamma-radiation, and these promising results should stimulate further investigations. Senescence of tumor cells and fibroblasts on the 4th day after ionizing radiation (IR) and low-level laser therapy (LLLT) exposures. The number of senescent cells increased significantly for tumor cells (a) while for fibroblasts no increment was observed (b). The blue collor indicates senescence activity.


Subject(s)
Cellular Senescence , Fibroblasts/radiation effects , Gamma Rays/adverse effects , Low-Level Light Therapy , Radiation Exposure/adverse effects , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...