Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 169(1): 265-74, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15466429

ABSTRACT

Genetic interventions that accelerate or retard aging in mice are crucial in advancing our knowledge over mammalian aging. Yet determining if a given intervention affects the aging process is not straightforward since, for instance, many disease-causing mutations may decrease life span without affecting aging. In this work, we employed the Gompertz model to determine whether several published interventions previously claimed to affect aging in mice do indeed alter the aging process. First, we constructed age-specific mortality tables for a number of mouse cohorts used in longevity experiments and calculated the rate at which mortality increases with age. Estimates of age-independent mortality were also calculated. We found no statistical evidence that GHRHR, IGF1R, INSR, PROP1, or TRX delay or that ATM + TERC, BubR1, klotho, LMNA, PRDX1, p53, WRN + TERC, or TOP3B accelerate mouse aging. Often, changes in the expression of these genes affected age-independent mortality and so they may prove useful to other aspects of medicine. We found statistical evidence that C/EBP, MSRA, SHC1, growth hormone, GHR, PIT1, and PolgA may influence aging in mice. These results were interpreted together with age-related physiological and pathological changes and provide novel insights regarding the role of several genes in the mammalian aging process.


Subject(s)
Aging/physiology , Gene Expression , Genes/physiology , Mortality , Animals , Mice , Mice, Mutant Strains , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...