Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35455443

ABSTRACT

Leishmaniasis remains one of the ten Neglected Tropical Diseases with significant morbidity and mortality in humans. Current treatment of visceral leishmaniasis is difficult due to a lack of effective, non-toxic, and non-extensive medications. This study aimed to evaluate the selectivity of 12 synthetic endoperoxides (1,2,4-trioxolanes; 1,2,4,5-tetraoxanes) and uncover their biochemical effects on Leishmania parasites responsible for visceral leishmaniasis. The compounds were screened for in vitro activity against L. infantum and L. donovani and for cytotoxicity in two monocytic cell lines (J774A.1 and THP-1) using the methyl thiazol tetrazolium assay. Reactive oxygen species formation, apoptosis, and mitochondrial impairment were measured by flow cytometry. The compounds exhibited fair to moderate anti-proliferative activity against promastigotes of the 2 Leishmania species, with IC50 values ranging from 13.0 ± 1.7 µM to 793.0 ± 37.2 µM. Tetraoxanes LC132 and LC138 demonstrated good leishmanicidal activity on L. infantum amastigotes (IC50 13.2 ± 5.2 and 23.9 ± 2.7 µM) with low cytotoxicity in mammalian cells (SIs 22.1 and 118.6), indicating selectivity towards the parasite. Furthermore, LC138 was able to induce late apoptosis and dose-dependent oxidative stress without affecting mithocondria. Compounds LC132 and LC138 can be further explored as potential antileishmanial chemotypes.

2.
J Phys Chem A ; 124(21): 4202-4210, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32375479

ABSTRACT

Dispiro-1,2,4-trioxolane, 1, an ozonide with efficient and broad antiparasitic activity, was synthesized and investigated using matrix isolation FTIR and EPR spectroscopies together with both B3LYP/6-311++G(3df,3dp) and M06-2X/6-311++G(3df,3dp) theoretical methods. Irradiations (λ ≥ 290 nm) of the matrix isolated 1 (Ar or N2) afforded exclusively 4-oxahomoadamantan-5-one, 4, and 1,4-cyclohexanedione, 5. These results suggested that the reaction proceeded via a dioxygen-centered diradical intermediate, formed upon homolytic cleavage of the labile peroxide bond, which regioselectively isomerized to form the more stable (secondary carbon-centered)/oxygen-centered diradical. In situ EPR measurements during the photolysis of 1 deposited in a MeTHF-matrix led to the detection of signals corresponding to two triplet species, one of which was short-lived while the other proved to be persistent at 10 K. These observations strongly support the proposed mechanism for the photogeneration of 4 and 5, which involves intramolecular rearrangement of the intermediate diradical species 2 to afford the triplet diradical 3.

3.
Molecules ; 25(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979089

ABSTRACT

A chemically diverse range of novel tetraoxanes was synthesized and evaluated in vitro against intramacrophage amastigote forms of Leishmania donovani. All 15 tested tetraoxanes displayed activity, with IC50 values ranging from 2 to 45 µm. The most active tetraoxane, compound LC140, exhibited an IC50 value of 2.52 ± 0.65 µm on L. donovani intramacrophage amastigotes, with a selectivity index of 13.5. This compound reduced the liver parasite burden of L. donovani-infected mice by 37% after an intraperitoneal treatment at 10 mg/kg/day for five consecutive days, whereas miltefosine, an antileishmanial drug in use, reduced it by 66%. These results provide a relevant basis for the development of further tetraoxanes as effective, safe, and cheap drugs against leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Leishmania donovani/drug effects , Leishmania donovani/pathogenicity , Tetraoxanes/chemistry , Tetraoxanes/therapeutic use , Animals , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Mice , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Phosphorylcholine/therapeutic use
4.
Malar J ; 17(1): 145, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29615130

ABSTRACT

BACKGROUND: The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs. METHODS: A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay. RESULTS: The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3-71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration. CONCLUSION: The investigated, trioxolane-tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance , Peroxides/therapeutic use , Plasmodium falciparum/drug effects , Animals , Artemisinins/pharmacology , Benzothiazoles , Cricetulus , Diamines , Hep G2 Cells , Humans , Mice , Organic Chemicals , Quinolines
5.
Chemistry ; 24(13): 3251-3262, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29283203

ABSTRACT

Reports showing that the copper concentration is considerably higher in neoplasms than in normal tissues prompted the need to develop selective copper chelators. We disclosed recently that some N-linked tetrazole-saccharinates bind selectively to copper, forming complexes that are highly cytotoxic towards cancer cells. Because tetrazole-saccharinates are photolabile, due to the photoreactivity of tetrazoles, we proposed thiadiazolyl-saccharinates as an alternative. Herein we describe the synthesis, structure, and monomeric photochemistry of a sulphanyl-bridged thiadiazolyl-saccharinate, 3-[(5-methyl-1,3,4-thiadiazol-2-yl)sulphanyl]-1,2-benzothiazole 1,1-dioxide (MTSB). The monomeric structure, charge density analysis, and characteristic infrared spectrum of MTSB were investigated theoretically, using quantum chemical calculations, and also experimentally, using matrix-isolation infrared spectroscopy. The crystal structure was investigated by combining X-ray crystallography with infrared and Raman spectroscopies. Results show that the structure of isolated MTSB is similar to that found in the crystal, with an S⋅⋅⋅N interaction clearly contributing to the structure of the molecule and of the crystal. Matrix irradiation revealed a high photostability of MTSB, compared to parent tetrazole-saccharinates and to the 5-methyl-1,3,4-thiadiazole building block, emphasizing the photostabilizing effect of the saccharyl system. Finally, in vitro toxicity assays of MTSB showed a copper concentration-dependent toxicity against cancer cells, without affecting normal cells. In particular, MTSB was most effective towards the hepatic (HepG2), neuroblastoma (SH-SY5), and lymphoma cell lines (U937). Thus, MTSB represents a promising lead for cancer chemotherapy based on chelating agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , Heterocyclic Compounds, Bridged-Ring/chemical synthesis , Heterocyclic Compounds, Bridged-Ring/pharmacology , Saccharin/analogs & derivatives , Saccharin/chemical synthesis , Saccharin/pharmacology , Sulfur Compounds/chemical synthesis , Sulfur Compounds/pharmacology , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacology , Antineoplastic Agents/chemistry , Benzothiazoles/chemistry , Heterocyclic Compounds, Bridged-Ring/chemistry , Humans , Molecular Structure , Saccharin/chemistry , Structure-Activity Relationship , Sulfur Compounds/chemistry , Thiadiazoles/chemistry
6.
Antimicrob Agents Chemother ; 59(8): 5032-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014947

ABSTRACT

Leishmaniasis is among the world's most neglected diseases. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. A small library of artemisinin-derived trioxanes and synthetic trioxolanes was tested against promastigote and intramacrophage amastigote forms of Leishmania infantum. The trioxolanes LC50 and LC95 presented the best activity and safety profiles, showing potential for further studies in the context of leishmanial therapy. Our results indicate that the compounds tested exhibit peroxide-dependent activity.


Subject(s)
Antiparasitic Agents/pharmacology , Artemisinins/pharmacology , Heterocyclic Compounds, 1-Ring/pharmacology , Leishmania infantum/drug effects , Leishmaniasis/drug therapy , Spiro Compounds/pharmacology , Cell Proliferation/drug effects , Drug Resistance, Multiple , Humans , Macrophages/parasitology , Parasitic Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...