Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 41(7): e0004421, 2021 06 23.
Article in English | MEDLINE | ID: mdl-33941618

ABSTRACT

Prions are self-perpetuating, alternative protein conformations associated with neurological diseases and normal cellular functions. Saccharomyces cerevisiae contains many endogenous prions, providing a powerful system to study prionization. Previously, we demonstrated that Swi1, a component of the SWI/SNF chromatin-remodeling complex, can form the prion [SWI+]. A small region, Swi11-38, with a unique amino acid composition of low complexity, acts as a prion domain and supports [SWI+] propagation. Here, we further examine Swi11-38 through site-directed mutagenesis. We found that mutations of the two phenylalanine residues or the threonine tract inhibit Swi11-38 aggregation. In addition, mutating both phenylalanines can abolish de novo prion formation by Swi11-38, whereas mutating only one phenylalanine does not. Replacement of half of or the entire eight-threonine tract with alanines has the same effect, possibly disrupting a core region of Swi11-38 aggregates. We also show that Swi11-38 and its prion-fold-maintaining mutants form high-molecular-weight, SDS-resistant aggregates, whereas the double-phenylalanine mutants eliminate these protein species. These results indicate the necessity of the large hydrophobic residues and threonine tract in Swi11-38 in prionogenesis, possibly acting as important aggregable regions. Our findings thus highlight the importance of specific amino acid residues in the Swi1 prion domain in prion formation and maintenance.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Fungal/genetics , Mutation/genetics , Prions/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Prions/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...