Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 29(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257237

ABSTRACT

An unusual series of germylenes and stannylenes stabilized by new tetradentate bis(amidine) ligands RNC(R')N-linker-NC(R')NR with a rigid naphthalene backbone has been prepared by protonolysis reaction of Lappert's metallylenes [M(HMDS)2] (M = Ge or Sn). Germylenes and stannylenes were fully characterized by NMR spectroscopy and X-ray diffraction analysis. DFT calculations have been performed to clarify the structural and electronic properties associated with tetradentate bis(amidine) ligands. Stannylene L1Sn shows reactivity through oxidation, oxidative addition, and transmetalation reactions, affording the corresponding gallium and aluminum derivatives.

2.
Biomed Pharmacother ; 164: 114949, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37267640

ABSTRACT

Multidrug-resistant bacteria, such as ESBL producing-Klebsiella pneumoniae, have increased substantially, encouraging the development of complementary therapies such as photodynamic inactivation (PDI). PDI uses photosensitizer (PS) compounds that kill bacteria using light to produce reactive oxygen species. We test Ru-based PS to inhibit K. pneumoniae and advance in the characterization of the mode of action. The PDI activity of PSRu-L2, and PSRu-L3, was determined by serial micro dilutions exposing K. pneumoniae to 0.612 J/cm 2 of light dose. PS interaction with cefotaxime was determined on a collection of 118 clinical isolates of K. pneumoniae. To characterize the mode of action of PDI, the bacterial response to oxidative stress was measured by RT-qPCR. Also, the cytotoxicity on mammalian cells was assessed by trypan blue exclusion. Over clinical isolates, the compounds are bactericidal, at doses of 8 µg/mL PSRu-L2 and 4 µg/mL PSRu-L3, inhibit bacterial growth by 3 log10 (>99.9%) with a lethality of 30 min. A remarkable synergistic effect of the PSRu-L2 and PSRu-L3 compounds with cefotaxime increased the bactericidal effect in a subpopulation of 66 ESBL-clinical isolates to > 6 log10 with an FIC-value of 0.16 and 0.17, respectively. The bacterial transcription response suggests that the mode of action occurs through Type II oxidative stress. The upregulation of the extracytoplasmic virulence factors mrkD, magA, and rmpA accompanied this response. Also, the compounds show little or no toxicity in vitro on HEp-2 and HEK293T cells. Through the type II effect, PSs compounds are bactericidal, synergistic on K. pneumoniae, and have low cytotoxicity in mammals.


Subject(s)
Cefotaxime , Photochemotherapy , Animals , Humans , Cefotaxime/pharmacology , Klebsiella pneumoniae , HEK293 Cells , beta-Lactamases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Mammals
3.
Molecules ; 29(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202630

ABSTRACT

A series of four novel heteroleptic Cu(I) complexes, bearing bis(1H-indazol-1-yl)methane analogues as N,N ligands and DPEPhos as the P,P ligand, were synthesised in high yields under mild conditions and characterised by spectroscopic and spectrometric techniques. In addition, the position of the carboxymethyl substituent in the complexes and its effect on the electrochemical and photophysical behaviour was evaluated. As expected, the homoleptic copper (I) complexes with the N,N ligands showed air instability. In contrast, the obtained heteroleptic complexes were air- and water-stable in solid and solution. All complexes displayed green-yellow luminescence in CH2Cl2 at room temperature due to ligand-centred (LC) phosphorescence in the case of the Cu(I) complex with an unsubstituted N,N ligand and metal-to-ligand charge transfer (MLCT) phosphorescence for the carboxymethyl-substituted complexes. Interestingly, proper substitution of the bis(1H-indazol-1-yl)methane ligand enabled the achievement of a remarkable luminescent yield (2.5%) in solution, showcasing the great potential of this novel class of copper(I) complexes for potential applications in luminescent devices and/or photocatalysis.

4.
Molecules ; 29(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202636

ABSTRACT

In this work, we report on the synthesis and characterization of six new iridium(III) complexes of the type [Ir(C^N)2(N^N)]+ using 2-phenylpyridine (C1-3) and its fluorinated derivative (C4-6) as cyclometalating ligands (C^N) and R-phenylimidazo(4,5-f)1,10-phenanthroline (R = H, CH3, F) as the ancillary ligand (N^N). These luminescent complexes have been fully characterized through optical and electrochemical studies. In solution, the C4-6 series exhibits quantum yields (Ф) twice as high as the C1-3 series, exceeding 60% in dichloromethane and where 3MLCT/3LLCT and 3LC emissions participate in the phenomenon. These complexes were employed in the active layer of light-emitting electrochemical cells (LECs). Device performance of maximum luminance values of up to 21.7 Lx at 14.7 V were observed for the C2 complex and long lifetimes for the C1-3 series. These values are counterintuitive to the quantum yields observed in solution. Thus, we established that the rigidity of the system and the structure of the solid matrix dramatically affect the electronic properties of the complex. This research contributes to understanding the effects of the modifications in the ancillary and cyclometalating ligands, the photophysics of the complexes, and their performance in LEC devices.

5.
Int J Mol Sci ; 21(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881717

ABSTRACT

We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Purines/chemistry , Quantitative Structure-Activity Relationship , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Purines/chemical synthesis , Purines/pharmacology , S Phase Cell Cycle Checkpoints/drug effects
6.
Molecules ; 23(6)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895756

ABSTRACT

We describe the syntheses of nine new angucyclinone 6-aza-analogues, achieved through a hetero Diels-Alder reaction between the shikimic acid derivative-azadiene 13, with different naphthoquinones. The cytotoxic activity of the new synthesized compounds and five angucyclinones, previously reported, was evaluated in vitro against three cancer cell lines: PC-3 (prostate cancer), HT-29 (colon cancer), MCF-7 (breast cancer), and one non-tumoral cell line, human colon epithelial cells (CCD841 CoN). Our results showed that most 6-azadiene derivatives exhibited significant cytotoxic activities, which was demonstrated by their IC50 values (less than 10 µM), especially for the most sensitive cells, PC-3 and HT-29. From a chemical point of view, depending on the protected group of ring A and the pattern of substitution on ring D, cytotoxicity elicited these compounds, in terms of their potency and selectivity. Therefore, according to these chemical features, the most promising agents for every cancer cell line were 7a, 17, and 19c for PC-3 cells; 7a, 17, and 20 for HT-29 cells, and 19a for MCF-7 cells.


Subject(s)
Anthraquinones/chemical synthesis , Antineoplastic Agents/chemical synthesis , Shikimic Acid/chemistry , Anthraquinones/chemistry , Anthraquinones/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cycloaddition Reaction , Drug Screening Assays, Antitumor , HT29 Cells , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
7.
J Inorg Biochem ; 174: 90-101, 2017 09.
Article in English | MEDLINE | ID: mdl-28648925

ABSTRACT

Four new neutral N,N imidoyl-indazole ligands (L1, L3, L6, L7) and six new Pt(II)-based complexes (C1-5 and C7) were synthesized and characterized by spectroscopic and spectrometric techniques. Additionally, compounds L6, L7, C3, C5 and C7 were analyzed using X-ray diffraction. An evaluation of cytotoxicity and cell death in vitro for both ligands and complexes was performed by colorimetric assay and flow cytometry, in four cancer cell lines and VERO cells as the control, respectively. Cytotoxicity and selectivity demonstrated by each compound were dependent on the cancer cell line assayed. IC50 values of complexes C1-5 and C7 were lower than those exhibited for the reference drug cisplatin, and selectivity of these complexes was in general terms greater than cisplatin on three cancer cell lines studied. In HL60 cells, complexes C1 and C5 exhibited the lowest values of IC50 and were almost five times more selective than cisplatin. Flow cytometry results suggest that each complex predominantly induced necrosis, and its variant necroptosis, instead of apoptosis in all cancer cell lines studied. DNA binding assays, using agarose gel electrophoresis and UV-visible spectrophotometry studies, displayed a strong interaction only between C4 and DNA. In fact, theoretical calculations showed that C4-DNA binding complex was the most thermodynamic favorable interaction among the complexes in study. Overall, induction of cell death by dependent and independent-DNA-metal compound interactions were possible using imidoyl-indazole Pt(II) complexes as anticancer agents.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , DNA, Neoplasm/metabolism , Indazoles , Neoplasms/drug therapy , Organoplatinum Compounds , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Chlorocebus aethiops , HL-60 Cells , HeLa Cells , Humans , Indazoles/chemistry , Indazoles/pharmacokinetics , Indazoles/pharmacology , Neoplasms/metabolism , Neoplasms/pathology , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacokinetics , Organoplatinum Compounds/pharmacology , Vero Cells
8.
Photochem Photobiol Sci ; 16(8): 1268-1276, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28636041

ABSTRACT

In this paper, we explored the fluorescence properties of eight aurone derivatives bearing methoxy groups and bromine atoms as substituents in the benzene rings. All derivatives showed strong solvatochromic absorption and emission properties in solvents of different polarities. Some of them showed high fluorescence quantum yields, which make them potential compounds for sensing applications. The position of the methoxy groups in the benzofuranone moiety and the presence of bromine atoms in the benzene ring had a strong influence on the fluorescence behaviour of the aurones. DFT calculations allowed us to explain the emission properties of aurones and their solvatochromism, which was related to an excited state with strong charge-transfer character. Aurone 4 has the most promising characteristics showing a large difference in the quantum yields and large Stokes shifts depending on the solvent polarities. These results prompted us to explore some preliminary biological applications for aurone 4 such as the sensing of hydrophobic pockets of a protein and its thermotropic behaviour in liposomes.


Subject(s)
Benzofurans/chemistry , Models, Theoretical , Benzofurans/metabolism , Humans , Liposomes/chemistry , Liposomes/metabolism , Quantum Theory , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Solvents/chemistry , Spectrometry, Fluorescence
9.
Dalton Trans ; 44(45): 19606-14, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26202830

ABSTRACT

The syntheses of the new asymmetric substituted boron amidines [N'-(2,6-diisopropylphenyl)-N-(pentafluorophenyl)acetimidamide]bis(pentafluorophenyl)borate () and [N'-(2,6-diisopropylphenyl)-N-(4-cyanophenyl)acetimidamide]bis(pentafluorophenyl)borate () were achieved by reaction of one equivalent of HB(C6F5)2 and the respective amidines and . These adducts, bearing electron withdrawing groups, showed thermally induced H2 elimination forming the four-membered cyclic diazaborate derivatives and . These new species were characterized by spectroscopic methods. X-ray diffraction studies have been carried out on , and . To prevent undesired reactions at the nitrile group, one equivalent of B(C6F5)3 was added to yielding the -B(C6F5)3 nitrile adduct . Compound underwent thermally induced dehydrogenation to give the four-membered cyclic diazaborate derivative . CO was inserted into the ring systems of and forming the five-membered diazaborolone derivatives and . Phenylacetylene reacted stoichiometrically with the asymmetric substituted boron amidines , and to give styrene by double H transfer.

10.
Dalton Trans ; 41(4): 1243-51, 2012 Jan 28.
Article in English | MEDLINE | ID: mdl-22124419

ABSTRACT

In this contribution the synthesis and characterization of two distinct, yet similar, zirconium complexes, [(π-P-nacnac-CN)Cp] and [(π-nacnac-CN)Cp] zirconium dichloride were discussed. In addition to the complexes, Lewis acid adducts [B(C(6)F(5))(3)] of the complexes were isolated and characterized as well. It was found that while structurally similar, the complexes behave distinctly upon adduct formation and in their ethylene polymerizations.

SELECTION OF CITATIONS
SEARCH DETAIL
...