Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 236: 107568, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37137221

ABSTRACT

BACKGROUND AND OBJECTIVES: Recent advances in Automated Insulin Delivery systems have been shown to dramatically improve glycaemic control and reduce the risk of hypoglycemia in people with type 1 diabetes. However, they are complex systems that require specific training and are not affordable for most. Attempts to reduce the gap with closed-loop therapies using advanced dosing advisors have so far failed, mainly because they require too much human intervention. With the advent of smart insulin pens, one of the main constraints (having reliable bolus and meal information) disappears and new strategies can be employed. This is our starting hypothesis, which we have validated in a very demanding simulator. In this paper, we propose an intermittent closed-loop control system specifically intended for multiple daily injection therapy to bring the benefits of artificial pancreas to the application of multiple daily injections. METHODS: The proposed control algorithm is based on model predictive control and integrates two patient-driven control actions. Correction insulin boluses are automatically computed and recommended to the patient to minimize the duration of hyperglycemia. Rescue carbohydrates are also triggered to avoid hypoglycemia episodes. The algorithm can adapt to different patient lifestyles with customizable triggering conditions, closing the gap between practicality and performance. The proposed algorithm is compared with conventional open-loop therapy, and its superiority is demonstrated through extensive in silico evaluations using realistic cohorts and scenarios. The evaluations were conducted in a cohort of 47 virtual patients. We also provide detailed explanations of the implementation, imposed constraints, triggering conditions, cost functions, and penalties for the algorithm. RESULTS: The in-silico outcomes combining the proposed closed-loop strategy with slow-acting insulin analog injections at 09:00 h resulted in percentages of time in range (TIR) (70-180 mg/dL) of 69.5%, 70.6%, and 70.4% for glargine-100, glargine-300, and degludec-100, respectively, and injections at 20:00 h resulted in percentages of TIR of 70.5%, 70.3%, and 71.6%, respectively. In all the cases, the percentages of TIR were considerably higher than those obtained from the open-loop strategy, being only 50.7%, 53.9%, and 52.2% for daytime injection and 55.5%, 54.1%, and 56.9% for nighttime injection. Overall, the occurrence of hypoglycemia and hyperglycemia was notably reduced using our approach. CONCLUSIONS: Event-triggering model predictive control in the proposed algorithm is feasible and may meet clinical targets for people with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , Hypoglycemia , Pancreas, Artificial , Humans , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents , Glycemic Control/adverse effects , Blood Glucose , Insulin Glargine/therapeutic use , Hypoglycemia/prevention & control , Hypoglycemia/drug therapy , Insulin , Hyperglycemia/drug therapy , Hyperglycemia/prevention & control , Algorithms , Insulin Infusion Systems , Blood Glucose Self-Monitoring
2.
J Biomed Inform ; 132: 104141, 2022 08.
Article in English | MEDLINE | ID: mdl-35835439

ABSTRACT

In silico simulations have become essential for the development of diabetes treatments. However, currently available simulators are not challenging enough and often suffer from limitations in insulin and meal absorption variability, which is unable to realistically reflect the dynamics of people with type 1 diabetes (T1D). Additionally, T1D simulators are mainly designed for the testing of continuous subcutaneous insulin infusion (CSII) therapies. In this work, a simulator is presented that includes a generated virtual patient (VP) cohort and both fast- and long-acting Glargine-100 U/ml (Gla-100), Glargine-300 U/ml (Gla-300), and Degludec-100 U/ml (Deg-100) insulin models. Therefore, in addition to CSII therapies, multiple daily injections (MDI) therapies can also be tested. The Hovorka model and its published parameter probability distributions were used to generate cohorts of VPs that represent a T1D population. Valid patients are filtered through restrictions that guarantee that they are physiologically acceptable. To obtain more realistic scenarios, basal insulin profile patterns from the literature have been used to identify variability in insulin sensitivity. A library of mixed meals identified from real data has also been included. This work presents and validates a methodology for the creation of realistic VP cohorts that include physiological variability and a simulator that includes challenging and realistic scenarios for in silico testing. A cohort of 47 VPs has been generated and in silico simulations of both CSII and MDI therapies were performed in open-loop. The simulation outcome metrics were contrasted with literature results.


Subject(s)
Diabetes Mellitus, Type 1 , Blood Glucose , Diabetes Mellitus, Type 1/drug therapy , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Glargine/therapeutic use , Insulin Infusion Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...