Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 130: 155085, 2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32259772

ABSTRACT

BACKGROUND: Based on the crosstalk of inflammation with apoptosis, autophagy, and endoplasmic reticulum (ER) stress, the main objective of this study was to explore the role of interleukin-6 (IL-6) on genes and proteins related to these phenomena in the livers of mice submitted to acute exhaustive exercise. METHODS: Reverse transcription-quantitative polymerase chain reaction and immunoblotting technique were used to evaluate the livers of wild-type (WT) and IL-6 knockout (KO) mice at baseline (BL) and 3 h after the acute exhaustive physical exercise (EE). RESULTS: Compared to the WT at baseline, the IL-6 KO had lower exhaustion velocity, mRNA levels of Mtor, Ulk1, Map1lc3b, and Mapk14, and protein contents of ATG5 and p-p70S6K/p70S6K. For the WT group, the EE decreased glycemia, mRNA levels of Casp3, Mtor, Ulk1, Foxo1a, Mapk14, and Ppargc1a, and protein contents of ATG5 and p-p70S6K/p70S6K, but increased mRNA levels of Sqstm1. For the IL-6 KO group, the EE decreased glycemia, mRNA levels of Casp3 and Foxo1a, and protein contents of pAkt/Akt and Mature/Pro IL-1beta, but increased mRNA levels of Sqstm1, and protein contents of p-AMPK/AMPK. CONCLUSION: The inhibition of the hepatic autophagy markers induced by the acute EE was attenuated in IL-6 KO mice, highlighting a new function of this cytokine.

2.
Nutrients ; 12(3)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121154

ABSTRACT

The present study verified the responses of proteins related to the autophagy pathway after 10 h of fast with resistance exercise and protein ingestion in skeletal muscle and liver samples. The rats were distributed into five experimental groups: control (CT; sedentary and without gavage after fast), exercise immediately (EXE-imm; after fast, rats were submitted to the resistance protocol and received water by gavage immediately after exercise), exercise after 1 h (EXE-1h; after fast, rats were submitted to the resistance protocol and received water by gavage 1 h after exercise), exercise and supplementation immediately after exercise (EXE/Suppl-imm; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage immediately after exercise), exercise and supplementation 1 h after exercise (EXE/Suppl-1h; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage 1 h after exercise). In summary, the current findings show that the combination of fasting, acute resistance exercise, and protein blend ingestion (immediately or 1 h after the exercise stimulus) increased the serum levels of leucine, insulin, and glucose, as well as the autophagy protein contents in skeletal muscle, but decreased other proteins related to the autophagic pathway in the liver. These results deserve further mechanistic investigations since athletes are combining fasting with physical exercise to enhance health and performance outcomes.


Subject(s)
Autophagy , Biomarkers/metabolism , Dietary Proteins/administration & dosage , Fasting/physiology , Liver/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Resistance Training , Albumins/metabolism , Animals , Autophagy/drug effects , Autophagy/genetics , Blood Glucose/metabolism , Body Weight/drug effects , Dietary Proteins/pharmacology , Eating , Fasting/blood , Gene Expression Regulation/drug effects , Insulin/blood , Leucine/blood , Liver/drug effects , Male , Muscle, Skeletal/drug effects , Organ Size/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...