Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Microb Ecol ; 87(1): 71, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748252

ABSTRACT

The high prevalence of antibiotic resistant bacteria (ARB) in several environments is a great concern threatening human health. Particularly, wastewater treatment plants (WWTP) become important contributors to the dissemination of ARB to receiving water bodies, due to the inefficient management or treatment of highly antibiotic-concentrated wastewaters. Hence, it is vital to develop molecular tools that allow proper monitoring of the genes encoding resistances to these important therapeutic compounds (antibiotic resistant genes, ARGs). For an accurate quantification of ARGs, there is a need for sensitive and robust qPCR assays supported by a good design of primers and validated protocols. In this study, eleven relevant ARGs were selected as targets, including aadA and aadB (conferring resistance to aminoglycosides); ampC, blaTEM, blaSHV, and mecA (resistance to beta-lactams); dfrA1 (resistance to trimethoprim); ermB (resistance to macrolides); fosA (resistance to fosfomycin); qnrS (resistance to quinolones); and tetA(A) (resistance to tetracyclines). The in silico design of the new primer sets was performed based on the alignment of all the sequences of the target ARGs (orthology grade > 70%) deposited in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, allowing higher coverages of the ARGs' biodiversity than those of several primers described to date. The adequate design and performance of the new molecular tools were validated in six samples, retrieved from both natural and engineered environments related to wastewater treatment. The hallmarks of the optimized qPCR assays were high amplification efficiency (> 90%), good linearity of the standard curve (R2 > 0.980), repeatability and reproducibility across experiments, and a wide linear dynamic range. The new primer sets and methodology described here are valuable tools to upgrade the monitorization of the abundance and emergence of the targeted ARGs by qPCR in WWTPs and related environments.


Subject(s)
Anti-Bacterial Agents , DNA Primers , Genes, Bacterial , Real-Time Polymerase Chain Reaction , Wastewater , DNA Primers/genetics , Real-Time Polymerase Chain Reaction/methods , Wastewater/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification
2.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396833

ABSTRACT

Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR is a transcription factor involved in polyhydroxyalkanoate (PHA) metabolism but also plays a role in the microaerobic network of this bacterium. To deeply uncover the function of PhaR, we applied a multipronged approach, including the expression profile of a phaR mutant at the transcriptional and protein levels under microaerobic conditions, and the identification of direct targets and of proteins associated with PHA granules. Our results confirmed a pleiotropic function of PhaR, affecting several phenotypes, in addition to PHA cycle control. These include growth deficiency, regulation of carbon and nitrogen allocation, and bacterial motility. Interestingly, PhaR may also modulate the microoxic-responsive regulatory network by activating the expression of fixK2 and repressing nifA, both encoding two transcription factors relevant for microaerobic regulation. At the molecular level, two PhaR-binding motifs were predicted and direct control mediated by PhaR determined by protein-interaction assays revealed seven new direct targets for PhaR. Finally, among the proteins associated with PHA granules, we found PhaR, phasins, and other proteins, confirming a dual function of PhaR in microoxia.


Subject(s)
Bradyrhizobium , Polyhydroxyalkanoates , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Polyhydroxyalkanoates/metabolism , Gene Expression Regulation, Bacterial
3.
Methods Mol Biol ; 2751: 145-163, 2024.
Article in English | MEDLINE | ID: mdl-38265715

ABSTRACT

Bacteria must be provided with a battery of tools integrated into regulatory networks, in order to respond and, consequently, adapt their physiology to changing environments. Within these networks, transcription factors finely orchestrate the expression of genes in response to a variety of signals, by recognizing specific DNA sequences at their promoter regions. Rhizobia are host-interacting soil bacteria that face severe changes to adapt their physiology from free-living conditions to the nitrogen-fixing endosymbiotic state inside root nodules associated with leguminous plants. One of these cues is the low partial pressure of oxygen within root nodules.Surface plasmon resonance (SPR) constitutes a technique that allows to measure molecular interactions dynamics at real time by detecting changes in the refractive index of a surface. Here, we implemented the SPR methodology to analyze the discriminatory determinants of transcription factors for specific interaction with their target genes. We focused on FixK2, a CRP/FNR-type protein with a central role in the complex oxygen-responsive regulatory network in the soybean endosymbiont Bradyrhizobium diazoefficiens. Our study unveiled relevant residues for protein-DNA interaction as well as allowed us to monitor kinetics and stability protein-DNA complex. We believe that this approach can be employed for the characterization of other relevant transcription factors which can assist to the better understanding of the adaptation of bacteria with agronomic or human interest to their different modes of life.


Subject(s)
Rhizobium , Humans , Surface Plasmon Resonance , Oxygen , DNA , Transcription Factors
4.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37573143

ABSTRACT

The soybean endosymbiont Bradyrhizobium diazoefficiens harbours the complete denitrification pathway that is catalysed by a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a nitrous oxide reductase (Nos), encoded by the napEDABC, nirK, norCBQD, and nosRZDFYLX genes, respectively. Induction of denitrification genes requires low oxygen and nitric oxide, both signals integrated into a complex regulatory network comprised by two interconnected cascades, FixLJ-FixK2-NnrR and RegSR-NifA. Copper is a cofactor of NirK and Nos, but it has also a role in denitrification gene expression and protein synthesis. In fact, Cu limitation triggers a substantial down-regulation of nirK, norCBQD, and nosRZDFYLX gene expression under denitrifying conditions. Bradyrhizobium diazoefficiens genome possesses a gene predicted to encode a Cu-responsive repressor of the CsoR family, which is located adjacent to copA, a gene encoding a putative Cu+-ATPase transporter. To investigate the role of CsoR in the control of denitrification gene expression in response to Cu, a csoR deletion mutant was constructed in this work. Mutation of csoR did not affect the capacity of B. diazoefficiens to grow under denitrifying conditions. However, by using qRT-PCR analyses, we showed that nirK and norCBQD expression was much lower in the csoR mutant compared to wild-type levels under Cu-limiting denitrifying conditions. On the contrary, copA expression was significantly increased in the csoR mutant. The results obtained suggest that CsoR acts as a repressor of copA. Under Cu limitation, CsoR has also an indirect role in the expression of nirK and norCBQD genes.


Subject(s)
Bradyrhizobium , Copper , Copper/metabolism , Denitrification , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Nitrates/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563511

ABSTRACT

FixK2 is a CRP/FNR-type transcription factor that plays a central role in a sophisticated regulatory network for the anoxic, microoxic and symbiotic lifestyles of the soybean endosymbiont Bradyrhizobium diazoefficiens. Aside from the balanced expression of the fixK2 gene under microoxic conditions (induced by the two-component regulatory system FixLJ and negatively auto-repressed), FixK2 activity is posttranslationally controlled by proteolysis, and by the oxidation of a singular cysteine residue (C183) near its DNA-binding domain. To simulate the permanent oxidation of FixK2, we replaced C183 for aspartic acid. Purified C183D FixK2 protein showed both low DNA binding and in vitro transcriptional activation from the promoter of the fixNOQP operon, required for respiration under symbiosis. However, in a B. diazoefficiens strain coding for C183D FixK2, expression of a fixNOQP'-'lacZ fusion was similar to that in the wild type, when both strains were grown microoxically. The C183D FixK2 encoding strain also showed a wild-type phenotype in symbiosis with soybeans, and increased fixK2 gene expression levels and FixK2 protein abundance in cells. These two latter observations, together with the global transcriptional profile of the microoxically cultured C183D FixK2 encoding strain, suggest the existence of a finely tuned regulatory strategy to counterbalance the oxidation-mediated inactivation of FixK2 in vivo.


Subject(s)
Bradyrhizobium , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/metabolism , DNA/metabolism , Glycine max/genetics , Glycine max/metabolism , Symbiosis , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328804

ABSTRACT

Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.


Subject(s)
Bradyrhizobium , Copper , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Copper/metabolism , Copper/pharmacology , Denitrification/genetics , Nitrates/metabolism , Nitrates/pharmacology , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Nitrogen Oxides/metabolism , Soil
7.
Environ Microbiol ; 23(10): 6194-6209, 2021 10.
Article in English | MEDLINE | ID: mdl-34227211

ABSTRACT

The FixK2 protein plays a pivotal role in a complex regulatory network, which controls genes for microoxic, denitrifying, and symbiotic nitrogen-fixing lifestyles in Bradyrhizobium diazoefficiens. Among the microoxic-responsive FixK2 -activated genes are the fixNOQP operon, indispensable for respiration in symbiosis, and the nnrR regulatory gene needed for the nitric-oxide dependent induction of the norCBQD genes encoding the denitrifying nitric oxide reductase. FixK2 is a CRP/FNR-type transcription factor, which recognizes a 14 bp-palindrome (FixK2 box) at the regulated promoters through three residues (L195, E196, and R200) within a C-terminal helix-turn-helix motif. Here, we mapped the determinants for discriminatory FixK2 -mediated regulation. While R200 was essential for DNA binding and activity of FixK2 , L195 was involved in protein-DNA complex stability. Mutation at positions 1, 3, or 11 in the genuine FixK2 box at the fixNOQP promoter impaired transcription activation by FixK2 , which was residual when a second mutation affecting the box palindromy was introduced. The substitution of nucleotide 11 within the NnrR box at the norCBQD promoter allowed FixK2 -mediated activation in response to microoxia. Thus, position 11 within the FixK2 /NnrR boxes constitutes a key element that changes FixK2 targets specificity, and consequently, it might modulate B. diazoefficiens lifestyle as nitrogen fixer or as denitrifier.


Subject(s)
Bradyrhizobium , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , DNA/metabolism
8.
Adv Microb Physiol ; 78: 259-315, 2021.
Article in English | MEDLINE | ID: mdl-34147187

ABSTRACT

Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.


Subject(s)
Fabaceae , Rhizobium , Bacteria , Nitric Oxide , Nitrogen Fixation , Symbiosis
9.
Front Microbiol ; 10: 1926, 2019.
Article in English | MEDLINE | ID: mdl-31481951

ABSTRACT

Denitrification in the soybean endosymbiont Bradyrhizobium diazoefficiens is controlled by a complex regulatory network composed of two hierarchical cascades, FixLJ-FixK2-NnrR and RegSR-NifA. In the former cascade, the CRP/FNR-type transcription factors FixK2 and NnrR exert disparate control on expression of core denitrifying systems encoded by napEDABC, nirK, norCBQD, and nosRZDFYLX genes in response to microoxia and nitrogen oxides, respectively. To identify additional genes controlled by NnrR and involved in the denitrification process in B. diazoefficiens, we compared the transcriptional profile of an nnrR mutant with that of the wild type, both grown under anoxic denitrifying conditions. This approach revealed more than 170 genes were simultaneously induced in the wild type and under the positive control of NnrR. Among them, we found the cycA gene which codes for the c 550 soluble cytochrome (CycA), previously identified as an intermediate electron donor between the bc 1 complex and the denitrifying nitrite reductase NirK. Here, we demonstrated that CycA is also required for nitrous oxide reductase activity. However, mutation in cycA neither affected nosZ gene expression nor NosZ protein steady-state levels. Furthermore, cycA, nnrR and its proximal divergently oriented nnrS gene, are direct targets for FixK2 as determined by in vitro transcription activation assays. The dependence of cycA expression on FixK2 and NnrR in anoxic denitrifying conditions was validated at transcriptional level, determined by quantitative reverse transcription PCR, and at the level of protein by performing heme c-staining of soluble cytochromes. Thus, this study expands the regulon of NnrR and demonstrates the role of CycA in the activity of the nitrous oxide reductase, the key enzyme for nitrous oxide mitigation.

10.
Front Microbiol ; 10: 924, 2019.
Article in English | MEDLINE | ID: mdl-31134003

ABSTRACT

The adaptation of rhizobia from the free-living state in soil to the endosymbiotic state comprises several physiological changes in order to cope with the extremely low oxygen availability (microoxia) within nodules. To uncover cellular functions required for bacterial adaptation to microoxia directly at the protein level, we applied a systems biology approach on the key rhizobial model and soybean endosymbiont Bradyrhizobium diazoefficiens USDA 110 (formerly B. japonicum USDA 110). As a first step, the complete genome of B. diazoefficiens 110spc4, the model strain used in most prior functional genomics studies, was sequenced revealing a deletion of a ~202 kb fragment harboring 223 genes and several additional differences, compared to strain USDA 110. Importantly, the deletion strain showed no significantly different phenotype during symbiosis with several host plants, reinforcing the value of previous OMICS studies. We next performed shotgun proteomics and detected 2,900 and 2,826 proteins in oxically and microoxically grown cells, respectively, largely expanding our knowledge about the inventory of rhizobial proteins expressed in microoxia. A set of 62 proteins was significantly induced under microoxic conditions, including the two nitrogenase subunits NifDK, the nitrogenase reductase NifH, and several subunits of the high-affinity terminal cbb 3 oxidase (FixNOQP) required for bacterial respiration inside nodules. Integration with the previously defined microoxia-induced transcriptome uncovered a set of 639 genes or proteins uniquely expressed in microoxia. Finally, besides providing proteogenomic evidence for novelties, we also identified proteins with a regulation similar to that of FixK2: transcript levels of these protein-coding genes were significantly induced, while the corresponding protein abundance remained unchanged or was down-regulated. This suggested that, apart from fixK 2, additional B. diazoefficiens genes might be under microoxia-specific post-transcriptional control. This hypothesis was indeed confirmed for several targets (HemA, HemB, and ClpA) by immunoblot analysis.

11.
Front Microbiol ; 8: 1621, 2017.
Article in English | MEDLINE | ID: mdl-28912756

ABSTRACT

The powerful greenhouse gas, nitrous oxide (N2O) has a strong potential to drive climate change. Soils are the major source of N2O and microbial nitrification and denitrification the main processes involved. The soybean endosymbiont Bradyrhizobium diazoefficiens is considered a model to study rhizobial denitrification, which depends on the napEDABC, nirK, norCBQD, and nosRZDYFLX genes. In this bacterium, the role of the regulatory cascade FixLJ-FixK2-NnrR in the expression of napEDABC, nirK, and norCBQD genes involved in N2O synthesis has been previously unraveled. However, much remains to be discovered regarding the regulation of the respiratory N2O reductase (N2OR), the key enzyme that mitigates N2O emissions. In this work, we have demonstrated that nosRZDYFLX genes constitute an operon which is transcribed from a major promoter located upstream of the nosR gene. Low oxygen was shown to be the main inducer of expression of nosRZDYFLX genes and N2OR activity, FixK2 being the regulatory protein involved in such control. Further, by using an in vitro transcription assay with purified FixK2 protein and B. diazoefficiens RNA polymerase we were able to show that the nosRZDYFLX genes are direct targets of FixK2.

12.
Antonie Van Leeuwenhoek ; 110(4): 531-542, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28040856

ABSTRACT

Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ54, was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.


Subject(s)
Bacterial Proteins/genetics , Bradyrhizobium/metabolism , Nitrate Reductase/metabolism , Nitrite Reductases/metabolism , Sigma Factor/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/growth & development , Denitrification/physiology , Nitrate Reductase/genetics , Nitrite Reductases/genetics , Glycine max/microbiology
13.
Biochem J ; 473(3): 297-309, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26564204

ABSTRACT

Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway.


Subject(s)
Bradyrhizobium/metabolism , Nitrates/metabolism , Nitric Oxide/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/enzymology , Bradyrhizobium/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/metabolism , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Nitrites/metabolism
14.
Thyroid Res ; 8: 12, 2015.
Article in English | MEDLINE | ID: mdl-26300979

ABSTRACT

BACKGROUND: Thyroperoxidase (TPO) is a membrane-bound protein essential for the production of thyroid hormones; because of this, TPO expression may be impaired in selected thyroid diseases. The goal of this study is to analyze TPO immune expression in differentiated thyroid cancer, and to determine whether TPO has any prognostic value. METHODS: A total of 139 patients who required surgery due to a thyroid nodule with signs or symptoms suspicious for malignancy during their physical, ultrasound and/or cytology examination were consecutively selected for the study. A study of TPO immunohistochemical expression was carried out on these patients using the MoAb47 monoclonal antibody. In addition, cell proliferation marker Ki67 and tumor suppressor p53 were also measured for comparison. RESULTS: A total of 139 cases, 43 benign tumors, 42 papillary carcinomas, 38 follicular carcinomas, 8 undifferentiated carcinomas, and 8 sporadic medullary carcinomas were analyzed. The relationship between TPO expression and disease was statistically significant (p <0.001), and decreased with tumor dedifferentiation extent. Increased TPO expression in benign lesions as compared to decreased expression in papillary carcinomas and undifferentiated tumors is outstanding. Differences in TPO expression were observed in minimally invasive follicular carcinoma (MIFC) compared to widely invasive follicular carcinoma (WIFC). TPO expression decreases in undifferentiated malignancies in contrast with p53 and Ki67 expression, which increases in that setting. TPO, p53 and Ki67 expression was significantly related to TNM stage (p <0.001). Survival rate was 72 % after a 20-year follow-up, and 100 % for subjects with higher TPO expression. CONCLUSIONS: TPO may be useful in confirming or ruling out benign diseases from differentiated thyroid carcinoma, with the exception of low-risk carcinoma such as MIFC. It could be used as a prognostic factor for differentiated thyroid cancer and patient follow-up, together with other markers.

15.
Article in English | MEDLINE | ID: mdl-24616777

ABSTRACT

UNLABELLED: A man underwent total thyroidectomy for goiter when he was 62 years old. The pathology report informed on a 5.5 cm oncocytic follicular adenoma and a 3.5 mm papillary microcarcinoma. Due to the papillary tumor, he was treated with ablative radioiodine therapy and suppressive doses of levothyroxine. After uneventful follow-up for 9 years, increased levels of serum thyroglobulin were detected. Further imaging studies including a whole body scan (WBS) after an empirical dose of 200 mCi (131)I were negative. Two years later, a (99m)Tc SestaMIBI WBS and a 2-[(18)F]-fluoro-2-deoxy-d-glucose positron-emission tomography showed a well-delimited focal uptake in the right femur. A bone biopsy of the lesion demonstrated metastasis of follicular thyroid carcinoma. Retrospective histological reexamination of available material from the primary oncocytic thyroid tumor failed to reveal definitive traits of malignancy. LEARNING POINTS: Oncocytic follicular thyroid tumors are a relatively uncommon variant of follicular thyroid neoplasms mostly composed of distinctive large oxyphilic cells (Hürthle cells).Criteria for the distinction between benign and malignant oncocytic neoplasms are not different from those used in the diagnosis of ordinary follicular tumors.Some cases of apparently benign oncocytic neoplasms have been found to develop malignant behavior.Search to rule out vascular and capsular invasion should be particularly exhaustive in histological assessment of oncocytic thyroid tumors.Even so, long-term surveillance remains appropriate for patients with large apparently benign oncocytic tumors.

16.
Biochem Soc Trans ; 39(6): 1880-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22103544

ABSTRACT

Nitric oxide (NO) is a gaseous signalling molecule which becomes very toxic due to its ability to react with multiple cellular targets in biological systems. Bacterial cells protect against NO through the expression of enzymes that detoxify this molecule by oxidizing it to nitrate or reducing it to nitrous oxide or ammonia. These enzymes are haemoglobins, c-type nitric oxide reductase, flavorubredoxins and the cytochrome c respiratory nitrite reductase. Expression of the genes encoding these enzymes is controlled by NO-sensitive regulatory proteins. The production of NO in rhizobia-legume symbiosis has been demonstrated recently. In functioning nodules, NO acts as a potent inhibitor of nitrogenase enzymes. These observations have led to the question of how rhizobia overcome the toxicity of NO. Several studies on the NO response have been undertaken in two non-dentrifying rhizobial species, Sinorhizobium meliloti and Rhizobium etli, and in a denitrifying species, Bradyrhizobium japonicum. In the present mini-review, current knowledge of the NO response in those legume-associated endosymbiotic bacteria is summarized.


Subject(s)
Bacteria/metabolism , Nitric Oxide/metabolism , Plants/microbiology , Symbiosis , Bacteria/genetics , Gene Expression Regulation, Bacterial , Models, Biological
17.
Biochem Soc Trans ; 39(1): 184-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21265770

ABSTRACT

NO (nitric oxide) is a signal molecule involved in diverse physiological processes in cells which can become very toxic under certain conditions determined by its rate of production and diffusion. Several studies have clearly shown the production of NO in early stages of rhizobia-legume symbiosis and in mature nodules. In functioning nodules, it has been demonstrated that NO, which has been reported as a potent inhibitor of nitrogenase activity, can bind Lb (leghaemoglobin) to form LbNOs (nitrosyl-leghaemoglobin complexes). These observations have led to the question of how nodules overcome the toxicity of NO. On the bacterial side, one candidate for NO detoxification in nodules is the respiratory Nor (NO reductase) that catalyses the reduction of NO to nitrous oxide. In addition, rhizobial fHbs (flavohaemoglobins) and single-domain Hbs which dioxygenate NO to form nitrate are candidates to detoxify NO under free-living and symbiotic conditions. On the plant side, sHbs (symbiotic Hbs) (Lb) and nsHbs (non-symbiotic Hbs) have been proposed to play important roles as modulators of NO levels in the rhizobia-legume symbiosis. In the present review, current knowledge of NO detoxification by legume-associated endosymbiotic bacteria is summarized.


Subject(s)
Fabaceae/microbiology , Nitric Oxide/metabolism , Rhizobium/physiology , Symbiosis , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Leghemoglobin/genetics , Leghemoglobin/metabolism , Molecular Sequence Data , Oxidoreductases/metabolism , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Sequence Alignment
18.
J Steroid Biochem Mol Biol ; 113(1-2): 85-91, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19095061

ABSTRACT

The exon 1 of the human androgen receptor (AR) gene contains two length polymorphisms of CAG (polyglutamine) and GGN (polyglycine). "In vitro" experiments suggest that the larger GGN repeats provide a lower AR-protein yield, whereas the larger CAG repeats decrease the AR transcriptional activity, both decreasing the AR signalling intensity. Here we have tested such possibilities in human prostatic cancer (CaP) specimens. We used 72 archival samples of radical prostatectomy. Parallel slides were used for AR protein or PSA immunohistochemistry, and for genotyping studies. Polymorphisms were genotyped by PCR, fragment length analysis and sequencing selected samples. The AR staining was positively correlated with the Gleason score (r=0.320; P=0.005), but it was not correlated to CAG or GGN repeat length or PSA staining. The number of GGN repeats was negatively correlated to the intensity of PSA staining (r=-0.243; P=0.04). Combination of short alleles of both tracts was significantly higher in: the heavier stained tertiles for PSA (P=0.03) and AR (P=0.06); and in the subgroup of samples having a Gleason score of 7 or higher (P=0.021). The results support the hypothesis that the shorter alleles of CAG and GGN repeats in the AR gene are associated to an increased AR signalling intensity in human prostate cancer, and with more aggressive forms of the disease.


Subject(s)
Alleles , Exons/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Staining and Labeling , Trinucleotide Repeat Expansion/genetics , Aged , Case-Control Studies , Genotype , Humans , Male , Middle Aged , Statistics, Nonparametric
19.
Santa Clara; s.n; com; abr 10-14, 2006. CD-ROM.
Monography in Spanish | CUMED | ID: cum-41076

ABSTRACT

El presente estudio describe el comportamiento de la promoción en la carrera de Medicina para los estudiantes de Haití desde el comienzo de la colaboración docente en la en la Facultad de Medicina 2 de Santiago de Cuba. Para la obtención de los datos se revisaron los registros de matricula desde el curso académico 1999-2000 hasta el 2004-2005; se recogió además la promoción final por curso y por año y se calcularon indicadores de eficiencia de ciclo y de curso. Los resultados fueron satisfactorios, los valores más bajos se detectaron en los estudiantes que comenzaron en el curso 2000-2001 (92,79) y para el curso académico 2001-2002 (94,4); en ningún caso el indicador calculado estuvo por debajo de los 92 puntos, razón que habla a favor de una excelente promoción para este grupo de estudiante(AU)


Subject(s)
Health Promotion , Schools, Medical , Education, Medical , Universities
20.
Toxicology ; 175(1-3): 49-62, 2002 Jun 14.
Article in English | MEDLINE | ID: mdl-12049835

ABSTRACT

Nonylphenol (NP) and 4-Octylphenol (4OP) have shown estrogenic properties both in vivo and in vitro. Researchers have known for years that estrogens induce a wide number of hepatotoxic actions in rodents. In order to study the acute hepatic effects exerted by NP and 4OP on rat liver the following endpoints were evaluated: relative liver weight (RLW), morphology, cell cycle and ploidy status, monooxygenase enzymes content and levels of both, cytosolic estrogen receptor (cER) and microsomal binding sites for estrogens (mEBS). Immature male Sprague-Dawley rats were injected intraperitoneally (i.p.) with 60 mg/kg of NP or 4OP for 1, 5 or 10 days. Despite the fact that RLW of the animals was not modified but any treatment, the histopathological study revealed the presence of an increase in the percentage of both, mitotic activity and Ki-67-labeling index (LI) in the livers from animals treated with alkylphenols in absence of any degenerative lesion. Furthermore, all the livers from alkylphenols-treated groups showed the presence of abnormal mitosis and c-mitosis. Although the levels of both, cER and cytochrome P450 (Cyt. P450) were not affected by any treatment, concentration of the mEBS was decreased after 10 days of treatment with alkylphenols. These findings taken together suggest that the exposition to alkylphenols induce cell proliferation and spindle disturbances and that these compounds are capable of modulating the expression of putative membrane receptors for estrogens.


Subject(s)
Chemical and Drug Induced Liver Injury , Estrogens, Non-Steroidal/toxicity , Phenols/toxicity , Animals , Cytochrome P-450 Enzyme System/metabolism , Flow Cytometry , Immunohistochemistry , Ki-67 Antigen/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Microscopy, Electron , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Organ Size/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...